Papers by Keyword: Permeability Evolution

Paper TitlePage

Authors: Tao Xu, Chun An Tang
Abstract: Rock permeability is important in civil and geo-hydraulic engineering, the mining and petroleum industries, and in environmental and engineering geology. In this paper, considering the mutual hydro-mechanical response between stress-induced permeability and damage, a coupled mathematical model for solid deformation and gas flow in the coal or rock was established and an attempt is made to investigate the rock permeability evolution, fracture patterns, and flow vectors in rock samples at the scale of usual laboratory samples as well as the relation between permeability and stress induced damage in connection with the complete strain-stress process of loaded rocks. Numerical simulations show that the permeability of rock was not constant, closely related to the state of stress, but varied with the stress and strain states in the rocks. Microcracking, resulting from the concentration of stress on relatively weak rock elements, triggers successive crack initiation and propagation that in turn leads to permeability enhancement. Prior to the peak strength, the permeability decreases with increasing load. A dramatic increase in permeability occurs in the post-peak stress-strain region due to the catastrophic collapse of microstructure in rock. Moreover, the permeability of rock in post-peak stress-strain region is much higher that that of in pre-peak region. Such intensive studies of gas flow in stressed heterogeneous rocks are useful as initial approaches to many engineering problems in mining and petroleum industries.
609
Authors: Shan Po Jia, Wei Zhong Chen
Abstract: The mechanical and hydraulic behavior of clay in the excavation damaged zone (EDZ) around underground repository is relevant for the assessment of the safety of geotechnical barriers. By integrating Mohr-Coulomb criterion and damage mechanics considerations, an elasto-plastic damage model is established for clay stone. Based on laboratory and in site investigations, the hydro-mechanical coupled damage model and permeability healing model is developed by the fully coupled hydro-mechanical coupled model, which can predict permeability changes and fractures self-healing in EDZ. Considering the construction of connecting gallery of radioactive waste disposal in deep clay formation in Belgium, a finite element damage model for simulating shield tunneling is proposed. The variations of damage and permeability around the tunnel with time are analyzed in detail. The proposed model is able to effectively depict the main features of hydro-mechanical behaviors of Boom clay.
2548
Showing 1 to 3 of 3 Paper Titles