Papers by Keyword: Soda Lime Glass

Paper TitlePage

Authors: M.A. Mahmud, A.K.M. Nurul Amin, M.D. Arif
Abstract: Soda-Lime glass is a very hard and brittle material which is commonly used as window panels and many other common applications. Due to its low fracture toughness it is very difficult to machine and obtain good surface finish under nornal cutting conditions. Hence, machining has to be done in ways to avoid brittle fracture on the finished machined surface. Such machining is only possible under ductile mode machining conditions when the removal of material is performed in the plastic state. However, ductile mode machining requires that during machining the temperature generated in the cutting zone in the working temperature range of glass to avoid crack formation during machining. This makes all types of machining of glass an extremely challenging affair, given the current state and mode of mechanical machining. This research paper elucidates the results of an experimental study for determination of critical depth of cut as a function of cutting parameters in high speed end milling of soda-lime glass. The critical depth is defined as the depth of cut at which crack formation the material is initiated for a given high speed attachment. In determining the critical depth as well as the ductile brittle transition depth, machining was performed on a tapered surface. Vibration signals from an accelerometer in time domain (amplitude vs. time display) and the surface characteristics were used in identifying the critical depth of cut. The new method has been found to be useful in online determination of the critical depth, as well as the brittle-ductile transition depth, for generating crack-free surfaces with good surface finish in high speed end milling of soda lime glass.
23
Authors: Muhammad Hafiz Ab Aziz, Zaliman Sauli, Vithyacharan Retnasamy, Hussin Kamarudin, Wan Mokhdzani Wan Norhaimi, Moganraj Palianysamy
Abstract: Silicon wafer bonding opens possibilities in creating MEMS devices and anodic bonding is found to be the most relevant wafer bonding technique process in constructing and packaging MEMS. This paper reports on the bond strength comparison between silicon and different glass based materials via anodic bonding. Two types of glass based surface used pyrex and soda lime glass. Bonding temperature is set at room temperature while a high direct current voltage of 15kV. Experiments were carried out using an in-house designed anodic bonder and the bond strength were measured using a bond strength tester. The anodic approach process was done in two sets which are before and after the cleaning process for each sample. Results show that all samples showed higher bond strength after the cleaning process. Silicon-soda lime glass have higher bonding strength of 1950 Pa compared to silicon-pyrex bonding which only gives 1850 Pa of bond strength.
420
Authors: Muhammad Hafiz Ab Aziz, Zaliman Sauli, Vithyacharan Retnasamy, Wan Mokhdzani Wan Norhaimi, Aaron Koay Terr Yeow, Hussin Kamarudin
Abstract: This paper reports on the bond strength comparison between silicon and different glass based materials via anodic bonding approach. The three types of glass based surface used were silica, pyrex, and soda lime glass. Silicon will be placed on the positive terminal and glass based materials will be placed on the negative terminal. Experiments were carried out using an in-house designed anodic bonder and the bond strength were measured using a bond strength tester. The anodic bonding approach process was done in two sets which are before and after the cleaning process for each sample. For every set, there are three different bonding partners, which are silicon with silica, silicon with Pyrex, and silicon with soda lime glass. From the results, it can be seen that almost all samples showed higher bond strength after the cleaning process. Silicon with soda lime glass bonding shows the highest bond strength compared with other materials.
89
Authors: A.K.M. Nurul Amin, A.A. Che Omar, M.A.Mohammed Kamal, Mahmoud M.A. Nassar, N.F. Mohd Zaib, Muammer Din Arif
Abstract: Soda lime glass is used extensively in camera lens, micro gas turbines, light bulbs, tablewares, optics, and chemical apparatus owing to its high hardness, excellent optical properties, and good corrosion and chemical resistance. Such applications of soda lime glass demand high machining and finishing precision. On the other hand, machining of glass poses significant challenges due to its inherent brittleness. The process of removal of material from glass, if not done in ductile mode, can generate subsurface cracks and brittle fractures which have adverse effects on its functionality. This research investigates the high speed micro-end milling of soda lime glass in order to obtain ductile regime machining. It has been found by other researchers that ductile mode machining can avoid sub-surface cracks and brittle fractures. However, in ductile mode machining, the gummy chips settle permanently on the machined surface affecting adversely the surface finish. In order to avoid such chip settlement, compressed air was directed using a special air delivery nozzle to blow away the resultant gummy chips, thereby preventing them from settling on the machined surface. Response surface methodology (RSM) and a commercial NC end mill were used to design and perform the machining runs, respectively. Machining was done using: high spindle speeds from 30,000 to 50,000 rpm, feed rates from 5 to 15 mm/min, and depth of cuts from 3 to 7 μm. Three different diameter carbide tools were used: 0.5, 1, and 2 mm. A surface profilometer was used to analyze the surface roughness of the resultant machined surface. Subsequently, the data was used for finding the best combination of cutting parameters required to obtain the lowest surface roughness. The results demonstrate that high speed machining is a viable option for obtaining ductile regime machining and generating machined surfaces with very low surface roughness in the range of 0.08μm – 0.22 μm, using 0.5 mm carbide end mill cutter.
51
Authors: Mohamed Konneh, Mst. Nasima Bagum, A.K.M. Nurul Amin, Amira Fatin Asyah
Abstract: Brittle materials like soda lime glass can be machined in ductile mode under controlled machining conditions (feed rate, depth of cut, small tool edge radius) using high speed to generate a desired surface finish. The heat generated in high speed machining tends to promote ductile machining. In this paper, heat assisted high speed end milling is investigated to explore machinability of the soda lime glass. The heat assisted machining thus generates low surface finish on the machined workpiece. The heat assisted high speed end milling of soda lime was carried out using uncoated 2 flute carbide end mill at a constant depth of cut 25 μm, while the spindle speed and feed rate were varied from 30,000 to 50,000 rpm and 45 to 75 mm/min, respectively. The applied temperature was varied from 200 °C to 300 °C. The observations of machined surface were done on Surf-test (SV-514) and Scanning Electron microscope (SEM). A quadratic model for roughness (Ra) was developed using Central Composite Design of experiment. The optimum Ra, 0.10 μm was achieved at 49,570 rpm, 58 mm/min feed rate and heating temperature at 238°C. It is found that cutting speed has the greatest influence on the surface roughness value, followed by feed rate and heating temperature.
145
Authors: M.A. Mahmud, A.K.M. Nurul Amin, Muammer Din Arif
Abstract: An experimental study of high speed machining of soda lime glass using directional compressed air blowing for removal of the ductile chips from the machined surface, is presented. High speed end milling of soda lime glass is performed on a vertical CNC milling machine to observe the effects of machining parameters i.e. spindle speed, depth of cut and feed rate on the resultant surface roughness. The design of the experiments was performed following the Central Composite Design (CCD) of the Response Surface methodology (RSM) using the Design Expert Software. Optimization of machining parameters was conducted using desirability function of the Design Expert software based on minimum surface roughness criterion. Finally, experimental verification tests were conducted to validate the predicted optimized value.
111
Authors: Muhammad Hafiz Ab Aziz, Zaliman Sauli, Vithyacharan Retnasamy, Hussin Kamarudin, Wan Mokhdzani Wan Norhaimi, Moganraj Palianysamy
Abstract: In this paper, the bondability of silicon bonded to different glass based material was studied by analyzing the bond strength comparison using the anodic bonding approach. The three types of glass based surface used were silica, pyrex, and soda lime glass. Experiments were carried out using an in-house designed anodic bonder and the bond strength were measured using a bond strength tester. Silicon will be placed on the positive terminal while the glass based materials will be placed on the negative terminal. The anodic process was done in two sets which are before and after the cleaning process for each sample. For every set, there are three different bonding partners, which are silicon with silica, silicon with Pyrex, and silicon with soda lime glass. From the results, it can be seen that majority of the samples showed higher bond strength after the cleaning process. Silicon bonded to soda lime glass showed the highest bond strength compared with other materials. This was followed by silicon to pyrex bonding and finally silicon to silica bonding. The maximum bond strength for all samples achieved in the range of 25 until 35 minutes of bonding time. After that, all samples show a critical decrease of bond strength except for the bonding process between silicon doped boron and silica. Cleaning process was proven a critical factor to achieve better bondability as shown in the higher bond strength obtained.
437
Authors: M.A. Mahmud, A.K.M. Nurul Amin, Muammer Din Arif
Abstract: Glass materials play a vital role in advancement of science and technology. They have found wide spread application in the industry, in laboratory equipment and in micro-gas turbines. Due to their low fracture toughness they are very difficult to machine, moreover there are the chip depositions on the machined surface which affects surface finish under ductile mode cutting conditions. In this research, high speed end milling of soda lime glass is performed on CNC vertical milling machine to investigate the effects of machining parameters i.e. spindle speed, depth of cut, and feed rate on machined surface roughness. Design of experiments was performed following Central Composite Design (CCD) of Response Surface Methodology (RSM). Design Expert Software was used for generating the empirical mathematical model for average surface roughness. The model’s validity was tested to 95% confidence level by Analysis of Variance (ANOVA). Subsequent experimental results showed that the developed mathematical model could successfully describe the performance indicators, i.e. surface roughness, within the controlled limits of the factors that were considered.
107
Authors: Apirat Theerapapvisetpong, Siripan Nilpairach
Abstract: Ceramic manufacturers are finding the way to decrease firing temperature and recover their wastes in order to keep production costs down. In this study earthenware ceramic bodies were prepared by adding a soda-lime glass grinding effluent powder (dried sludge) as a fluxing agent at 0–50 wt.% into either sanitary ware sludge powder (from a sanitary ware manufacturing process) or fresh pottery clay from Ang-thong, Thailand. The dried and pressed mixtures were fired at 1100, 1125 and 1150 °C and tested for the firing shrinkage, modulus of rupture, water absorption and bulk density. The formed product microstructure was observed by the scanning electron microscopy, and the phase composition was characterized by X-ray diffractometer. The results revealed that the best condition for adding the glass powder in Ang-thong pottery clay was the inclusion of 10 wt.% soda-lime glass effluent powder in the pottery clay. Its flexural strength increased from 51.25 MPa to 93.40 MPa after firing at 1125 °C with the water absorption of 0.42 wt.% and the firing shrinkage of 10.25 %. The optimum firing temperature and soda-lime glass content in sanitary ware sludge were 1150 °C and 20 wt.%, respectively. Its flexural strength increased from 103.16 MPa to 118.16 MPa with the water absorption of 0.52 wt.% and the firing shrinkage of 13.67 %. The results illustrated the potential to use soda-lime glass cutting sludge and sanitary ware sludge as raw materials for earthenware ceramic body.
169
Showing 1 to 9 of 9 Paper Titles