Papers by Keyword: Time-of-Flight (TOF)

Paper TitlePage

Authors: Chun Hui Yang, Zhong Qing Su, Lin Ye, Li Min Zhou, Peter D. Hodgson
Abstract: A series of digital frequency filters (DFFs) were designed to screen diverse noises and the spectrographic analysis was conducted to isolate complex boundary reflection, which obscures the damage-induced signals. The scale-averaged wavelet power (SAP) technique was applied to enhance the measurement accuracy of Time of Flight (TOF). As an example, the propagation characteristics of elastic wave in a structural beam of square cross-section were analyzed using such an approach and verified experimentally and numerically, with the consideration of the complicated wave scatter caused by the non-ignorable section dimensions.
Authors: Yasmina Belaroussi, Tahar Kerdja, Smail Malek
Abstract: The growth of thin films by laser ablation involves very complex physical processes. The quality of the layer and stoechiometry of the deposits depend on key parameters like the ion energy and their angular distribution. The evolution of ions number and energy, and the angular distributions in regards to the incident laser energy, have been studied by the mean of a charges collector. We present the polar diagrams of energy and number of ions collected by irradiating a silicon target using an excimer laser at different energies.
Authors: Yoshiaki Kiyanagi, Takashi Kamiyama, Toshiyuki Nagata, F. Hiraga
Abstract: Neutron imaging using a pulsed neutron time-of-flight method can give an energy dependent transmission image, namely, spectroscopic image. This image includes the structure information if the sample is coherent scatterer. Here, two examples are introduced. First, we obtained the transmission image of a welded sample of SS304 and 308. Change of the crystal structure depending on the position was observed. Furthermore, we measured spatial dependent transmission of SS samples treated in different ways, surface treatment and whole body treatment. There were almost no spatial dependent change, but the cross section change was found between surface and whole body treatment samples. It was suggested that this might be due to the difference of a grain size. These results demonstrated that the spectroscopic imaging using a pulsed neutron source is a useful tool for material characterization.
Authors: Yoshiaki Kiyanagi, Takashi Kamiyama, H. Iwasa, F. Hiraga
Authors: A.B. Gojani, Kazuyoshi Takayama
Abstract: Shock waves are indispensable tools for medical applications, and hence their interactions with human tissue become one of the most important basic research topics. In this paper, the determination of shock Hugoniot curves for liquids that can model human tissue, namely water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin, at 10 and 20 weight percent are presented. Underwater shock waves were generated by ignition of 10 mg silver azide pellets and time variations of over-pressures were measured and simultaneously the shock speed was measured by the time of flight technique. Then shock Hugoniot curves were obtained, by assuming the Tait type equation of state, to relate the estimated density and measured pressure values. Results show in the cases of aqueous solutions that increasing amount of additives into water causes only a very minute decrease in the compressibility of the solution. This difference was more pronounced in the case of sodium chloride, less for gelatin, and almost none for sucrose aqueous solution.
Authors: D.D. Cohen, N. Dytlewski, J. Martin, R. Siegele
Authors: M. Stutzmann
Showing 1 to 10 of 21 Paper Titles