Papers by Keyword: ePTFE

Paper TitlePage

Authors: Jun Teng Liu, Zhong Qi Ren, Wei Dong Zhang, De Qiang Jiang, Jian Chun Zhang, Geng Wang
Abstract: Filtration medium is one of the most important parts of air-filtration. A Micro-filtration membrane made by expanded poly-tetra-fluoric-ethylene (ePTFE) was introduced in the dust removal process in our previous work. Compared with conventional fabric media, ePTFE membrane has many advantages, such as low residual pressure drop and high efficiency of dust removal, etc., because of its characteristics of micro-porous structure and slippery surface. More importantly, the useful life of ePTFE membrane is longer and the operating costs are lower during the surface-filtration process. In this paper, the residual pressure drop of the ePTFE micro-filtration membrane and conventional needle-felts fabric filtration medium were compared. The results clearly show that the residual pressure drop of the conventional filter medium increases after several filtration cycles, but that of the ePTFE membrane remains constant.
701
Authors: Tatsuhide Hayashi, Kentaro Yoshihara, Mayu Kawase, Akimichi Mieki, Hiroyasu Kataoka, Soichiro Hamajima, Tatsushi Kawai
Abstract: The aim of this study is to induce bone from immature muscular tissue in vitro using recombinant human BMP (rhBMP)-2 and expanded polytetrafluoroethylene (ePTFE) as a scaffold. Commercially available rhBMP-2 was used in this experiment. IMTs were harvested from the forelimbs of 20th Sprague-Dawley embryonic rats and placed into a homogenizer with 10ng/μl of rhBMP-2 and then homogenized. The homogenized IMT was placed on ePTFE and cultured for 2 weeks. The analyses of histological observation, electron probe micro analyzer (EPMA), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were carried out following culture. The bone-like tissue, which was made up of osteoblast-like cells and osteoids, was partially observed by H-E staining. Moreover, strong mineral deposition was observed in the extracellular matrix by von Kossa staining. Ca, P and O were detected in the extracellular matrix by EPMA and were confirmed to be at almost the same position based on the findings of synchronized images. XRD patterns and FTIR spectra of specimen were found to have typical hydroxyapatite crystal peaks and spectra, respectively. These results suggest that rhBMP-2 induced IMT differentiation into bone-like tissue in vitro.
103
Authors: Yoon Jeong Choi, Mi Sook Kim, In Sup Noh
Abstract: Clinical applications of expanded polytetrafluoroethylene (ePTFE) as a small diameter graft have been limited due to its limited patency rates, even though its demands are high. After fabricating the biodegradable PLGA layers on both the inside and outside of ePTFE, long-term in vitro smooth muscle cell culture was performed on the luminal scaffold surface. The fabricated hybrid ePTFE scaffolds were designed to have three distinctive layers and porous structures in the biodegradable layers generated by gas-foaming of the ammonium bicarbonate porogens, i.e. two layers of poly(lactide-co-glycolide) (PLGA) as biodegradable layers for tissue engineering and an ePTFE layer in the middle as a non-biodegradable layer. We evaluated the regenerated vascular tissues after applying either static or pulstile flow on a smooth muscle cells-seeded hybrid scaffold. Analysis of the engineered tissues was performed with SEM for morphological observation and H&E staining for observation of tissue development dependent upon a mode of culture system, flow patterns and scaffold species.
61
Showing 1 to 4 of 4 Paper Titles