Papers by Keyword: Artificial Caries

Paper TitlePage

Authors: Kui Long Lu, Xiang Cai Meng, Jiu Xing Zhang, Xing Yi Li, Mei Ling Zhou
Abstract: The objective of this study was to investigate the inhibitory effect of the synthetic nanohydroxyapatite (HA) on dental caries. The nano-HA was synthesized by using the depositing reaction of Ca (H2PO4)2. The artificial dental caries was made by using sour solution and inoculating Streptococcus mutans (S.mutans) to the Sprague-Dawley (SD) rat’s mouth respectively. After mineralization of solution of nano-HA for 10 days, the hardness of enamel was measured. The inhibitory effect of the synthetic nano-HA on dental caries was detected by gargling way to rinse the rat tooth with the solution of nano-HA in the animal test. Transmission electron microscopy (TEM) revealed that the dried HA particles were needle-like with ф5-20nm×60nm and the sintered HA particles were spherical with less than 100nm. The remineralized test indicated that the solution of nano-HA with different shapes enhanced the hardness of artificial caries and improved the remineralization of artificial caries. The animal test showed that the dried nano-HA had the inhibitory effect on dental caries. The good absorptive effect of the nano-HA on both the saliva protein and the glucans leads to the development of interventions that could reduce or modify bacterial colonization of tooth surfaces.
1538
Authors: Kui Long Lv, Jiu Xing Zhang, Xiang Cai Meng, Xing Yi Li
Abstract: The aim of this study is to describe the remineralization effect of the nano-HA toothpaste on artificial caries. The artificial dental caries is made using sour solution. The demineralized teeth specimen is put into five kinds of toothpaste solution respectively for 5 days and 10 days, which are: solution of containing needle like nano-HA, solution of containing spherical nano-HA, solution of general HA, fluorine sodium solution and physiological saline. The hardness of specimen is measured and the surface morphology is characterized by SEM. The remineralized test indicates that the nano-HA toothpaste can enhance the hardness of artificial caries and improve the remineralization of artificial caries. The SEM analysis shows that the cavities and defects of enamel surface are decreased and many mineral salts are sedimentated, which indicate that the nano-HA could promote remineralization for the demineralized enamel.
267
Authors: Kui Long Lv, Hai Wen Yuan, Xiang Cai Meng, Xing Yi Li
Abstract: The aim of this study is to describe the remineralization effect of the nano-HA on artificial caries. The artificial dental caries are made by using sour solution, and constructing an artificial mouth' plaque culture system in vitro respectively. The scanning electron microscope (SEM) and the optical microscope are used to observe the surface of enamel specimens. The effect of remineralization is assessed with the polarized light microscopy (PLM) and the confocal laser scanning microscope (CLSM) by measuring three lesion parameters (area, total and average fluorescence). The SEM analysis shows that the cavities and defects of enamel surface are decreased and many mineral salts are sedimentated, which indicate that the nano-HA could promote remineralization for the demineralized enamel. The inhibitory effect of the spherical nano-HA on dental caries is detected in the artificial mouth test. The CLSM shows that demineralization of enamel is reduced by adding the spherical nano-HA in artificial mouth. The results show that the spherical nano HA have a remineralization effect on the artificial dental caries dramatically, and can prevent and decrease caries.
576
Showing 1 to 3 of 3 Paper Titles