Papers by Keyword: Brazing

Paper TitlePage

Authors: Seung Wook Baek, Won Bae Lee, Ja Myeong Koo, Chang Yong Lee, Seung Boo Jung
Abstract: Microstructure and mechanical properties of friction welded and vacuum brazed Ti/AISI 321 stainless steel have been evaluated with various welding conditions. Maximum tensile strength of friction welded joints was approximately 420 MPa with the conditions of 400 MPa of upset pressure (P2) and friction time (t1) within 2.0 s. Maximum tensile strength of brazed joints was acquired under the condition of 900 °C brazing temperature and 5 min. brazing time and showed approximately 275MPa which was about 80% of that of the Ti base metal. Friction welded Ti/AISI 321 joints showed the superior tensile strength than that of brazed Ti/AISI 321 due to thinner intermetallic compound layer.
Authors: Hong Hua Su, Yu Can Fu, Yan Chen, Jiu Hua Xu, Wen Feng Ding
Abstract: Monolayer brazed diamond tools, which are high bonding strength at the interface between brazing alloy and grits, are becoming the active field in which improvements in processing and advanced products can be anticipated. Some researchers proposed brazing diamond methods with Ni-Cr and Ag-Cu-Ti alloy, but there is a shortage of the comparative study of the characteristics of the brazed diamond tools fabricated with the different brazing alloy. In this paper, machining performance experiments have been carried out, including contrast tests about tool life and machining efficiency for thin-walled monolayer brazed diamond core drills fabricated with Ni-Cr and Ag-Cu-Ti alloy. The results show that the Ag-Cu-Ti alloy can improve the machining performance. Wear mechanism of diamond grits was studied in those drilling processes. The results show that the low ratio of grit breakdown of the core drill using Ag-Cu-Ti alloy is the key factor of its longer life. Furthermore, based on the experimental results, the areas of the grits wear flat increase the feed force, and decrease the machining efficiency.
Authors: Xiang Dong Ma, Xin Yang Wang, Ji Wen Li, Shi Zhong Wei
Abstract: Brazing with active filler alloys containing some active elements, which promotes wetting of ceramics surfaces, is one of the most widely methods for joining ceramics to metals. The joints formed by brazing A12O3 to metal by using copper-titanium-nickel (Cu-Ti-Ni) as brazing filler were investigated. The metals/ceramics joints were produced at a vacuum level of 10-2-10-3 Pa at 1273K, using a constant holding time of 10 min. The surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). In the brazing process, copper and titanium in the braze alloy form a series of reaction products. The formation of Ti3Cu3O and Ti2Ni at the interface is characteristic of these joints. The estimated free energies of formation of the Ti3Cu3O and Ti2Ni are -119kcal/mol and -245.92 kJ ~-263.78kJ/mol at 1200~1288K respectively. The highly negative values for the free energies of formation suggest that these compounds are thermodynamically stable.
Authors: T. Zaharinie, Farazila Yusof, Mohd Hamdi Abdul Shukor, T. Ariga
Abstract: In this study, a Cu/Ni porous composite was introduced when brazing sapphire to Inconel 600 using a special active filler metal of BAg-8 + 2Ti. The aim of the research is to investigate the Ti distributionin the Cu/Niporous composite and braze joint. The brazing was carried out in brazingtemperature of 830°C for 30 minutes by a vacuum environment (10-4 Pa). The interface of braze joint/sapphire and braze joint/Inconel 600 were observed by an electron microscope followed by elements analyzing using SEM-EDS. The observation and analysis shows that there is a black and thin reaction layer at braze joint/sapphire interface and a non-uniform of reaction layer was formed at braze joint/Inconel 600 interface. The formation of reaction layer is influenced by thermodynamic activity of Ti during brazing.
Authors: Taek Joon Son, Young Shin Lee
Abstract: The strength of micro heat exchanger under pressure is studied in this paper. Micro heat exchanger is made with brazing technology. It is constructed of stainless steel thin plates with micro channels and in/out port for fluid flow. Micro channels in thin plates are formed by etching and all parts including thin plates are joined by brazing. The study on the strength under pressure is performed by structural analysis. For structural analysis, one layer of micro heat exchanger body is considered. It is composed of thin plate with micro channel and brazing filler which is used to join thin plates. This paper shows the tendency of stress behavior and gives design guideline of micro heat exchanger.
Authors: V.M. Silva, A.J.S. Fernandes, Florinda M. Costa, J. Sacramento, Rui F. Silva
Authors: Torkel Stenqvist, Kristoffer Bång, Sören Kahl, Arnaud Contet, Oskar Karlsson
Abstract: Some aluminium alloys with Mg-Si age-hardening are used in vehicle radiators. For cost reasons they are preferably delivered in a naturally aged temper. Estimated minimum time of natural ageing between brazing and when the radiator is taken into service is 14 days. At the service temperature of 95°C, the radiator material will continue to age harden. For accelerated durability testing it is vital to use a radiator with the strength and ageing response of a service radiator. We investigated whether the full 14 days of natural ageing were needed, or if the time could be shortened. Since a vehicle is not in constant use, the radiator temperature will vary over time. We therefore compared cyclic ageing between ambient temperature and 95°C to continuous ageing at 95°C. The Sapa Heat Transfer alloys FA7870 (for headers) and FA7850 (for tubes) were subjected to different ageing times at different temperatures. Tensile and hardness were performed to assess the ageing effect. It was found that natural ageing reduced hardening during the subsequent ageing at service temperature ageing effect, an effect that was most pronounced for the first four days. There was no difference between continuous and cyclic ageing.
Authors: A. Ottlik, Volker Schulze, L. Pintschovius, Hermann Müller, Detlef Löhe
Abstract: Brazing of cemented carbides to steel bodies gives rise to the development of complex stress states and distortions which influence the fatigue behaviour of the parts. It is quite important to estimate the residual stresses with numerical methods whose agreement is to be guaranteed with experimental characterization of the brazed parts. In this work FEM simulations and X-ray as well as neutron stress analysis were used to examine the residual stresses of brazed samples. Joints with different geometries and dimensions made of cemented carbide and different steels showing different phase transformation behaviours were investigated.
Authors: Guo Qin Huang, Hui Huang, Xi Peng Xu
Abstract: An investigation was undertaken to elucidate the mechanisms for the fracture failure of brazed diamonds in wire sawing. Diamonds were brazed by high-frequency induction in vacuum. The changes of compressive strength and the appearances of the diamonds at different brazing temperatures were obtained. The morphologies of the diamonds after sawing were also observed. Together with the stress analysis of a brazed grit, it is found that the fracture failure of brazed grit is the result of the brittle fracture happening on the root section of the grit, the interface between the grit and the brazing alloy. The degradation of mechanical properties of grits in brazing is a key factor to the reduction of their resistance to fracture. Lower machining forces as well as grit exposure are in favor of preventing grits from fracture.
Showing 1 to 10 of 167 Paper Titles