Papers by Keyword: Case Hardened Steel

Paper TitlePage

Authors: Tsuyoshi Kubota, Hiroshi Yamagata
Abstract: The present requirements for the connecting rod are indicated and the fracture splitting (FS) technologies for constructing the big end boss are reviewed. Two possibilities of FS for a high strength Cr-Mo steel and Ti alloys were discussed. The carburized quench-temper FS connecting rod has a superior fatigue strength with a high dimensional accuracy at the big end boss. The possibility of using a titanium FS connecting rod was examined and proposed.
Authors: Hideaki Ikehata, Kouji Tanaka, Hiroyuki Takamiya, Hiroyuki Mizuno
Abstract: In order to predict microstructures during vacuum carburizing, the model which simulates not only the carbon(C) diffusion but also growth/dissolution of cementite(θ) is required. For development of a new model we applied vacuum carburizing to low alloy steels and analyzed the distribution of C and θ by GD-OES and image analysis of microstructures. The C in retained austenite(γ) phase after carburizing was also measured by lattice constants obtained from XRD. We also simulated multi-component diffusion with γ matrix and θ layer to analyze a velocity of the moving interface. The new carburizing model was proposed based on the findings, which suggest that C in γ phase at the carburizing surface is supersaturated and corresponds to C concentration for metastable equilibrium condition to graphite. The growth and dissolution of the θ follow a square root of time with the coefficients controlled by diffusion of Si in γ and Cr in θ respectively. The required parameters such as diffusivity coefficients are obtained by the CALPHAD method. The calculated C distributions and volume fractions of θ represent the experimental results.
Authors: Wolfgang Bleck, Gerhard Pariser, Sebastian Trute, Christian Klinkenberg
Authors: Peter Vomacka, Hartmut Walburger
Authors: Toshio Murakami, Hitoshi Hatano, Yosuke Shindo, Mutsuhiro Nagahama, Hiroshi Yaguchi
Abstract: In order to investigate the effects of Nb carbo-nitride precipitation conditions on abnormal grain growth behavior during high temperature carburizing, size of Nb carbo-nitride precipitates was controlled by precipitation treatment at 1173-1273K for 0.6-54ks, and the specimens were quasi-carburized at 1323K. Abnormal grain growth was enhanced when the size of Nb precipitates was fine or coarse, so there is a suitable size range in Nb precipitates to suppress abnormal grain growth. The reason why abnormal grain growth was enhanced is the lack of pinning force as the conventional theory proposed by Hillert or Gladman; however, it cannot be explained by this theory that small precipitates promote abnormal grain growth. It is considered that Ostwald ripening rate of precipitates is also an important factor in controlling abnormal grain growth in addition to the amount and size of precipitates and austenite grain size, which were parameters in the Gladman‘s theory on abnormal grain growth behavior.
Showing 1 to 7 of 7 Paper Titles