Papers by Keyword: Charge Transfer Resistance

Paper TitlePage

Authors: Nolubabalo Matinise, Noluthando Mayedwa, Chinwe O. Ikpo, Ntuthuko Wonderboy Hlongwa, Miranda M. Ndipingwi, Lerato Molefe, Nomxolisi Dywili, Anne Lutgarde Djoumessi Yonkeu, Tesfaye Waryo, Priscilla Gloria Lorraine Baker, Emmanuel Iheanyichukwu Iwuoha
Abstract: Symmmetrically oriented Pd (100) and its bimetallic Pd (100)Ru electrocatalysts were chemically synthesized and their conductive properties employed in the electrochemical oxidation of ammonia. Electrochemical data based on EIS, SWV and CV revealed that the Pt/Pd (100)Ru electrode showed a better conductivity and higher catalytic response towards the electrooxidation of ammonia compared to Pt/Pd (100) electrode. This was demonstrated by the EIS results where Pt/Pd (100)Ru gave a charge transfer resistance (Rct) of 48.64 Ω, high exchange current and lower time constant (5.2738 x 10-1A and 3.2802 x 10-7 s /rad) values while the Pt/Pd (100) had values of 173.2 Ω, 1.4811 x 10-1A and 4.8321 10-7 s /rad. The drastic drop in Rct highlights the superiority of the Pt/Pd (100)Ru over the Pt/Pd (100) and confirms that facile interfacial electron transfer processes occur on the Pt/Pd (100)Ru electrode during the electrocatalytic ammonia oxidation. Investigations through voltammetry revealed that the Pt/Pd (100)Ru had a higher peak current density and a shift in potential to more negative values at ≈ -0.2 V and ≈ -0.4 V. The EASA value of Pt/Pd (100)Ru was found to be 119.24 cm2 whereas Pt/Pd (100) had value of 75.07 cm2. The high electrochemically active surface area of Pd (100)Ru at 119.24 cm2 compared to the 75.07 cm2 for Pd (100) strengthened this observation in performance between the two catalysts for ammonia electrooxidation.
100
Authors: Rabat Boonpong, Attera Worayingyong, Marisa Arunchaiya, Atchana Wongchaisuwat
Abstract: The utilization of zinc anode for zinc-based battery is limited due to low cycling life, shape change and ZnO passivation on the electrode surface. The electrochemical behavior of zinc anode in the presence of the additives added to the electrodes or the electrolytes have been reported. In this work, LaCoO3 was used as an additive to improve the electrochemical properties of the zinc oxide anode. LaCoO3 synthesized by sol gel method (Schiff base complex) was added to zinc oxide powder (99.9%) with the weight ratio of 1:0.001, 1:0.002 and 1:0.003. The relative ZnO/LaCoO3 ratios were confirmed by particle induced x-ray emission (PIXE) technique.The electrochemical behavior of the ZnO/LaCoO3 electrodes in 6M KOH solution were investigated by voltammetry and electrochemical impedance spectroscopy (EIS). The cyclic voltammogram showed that ZnO/LaCoO3 gave higher anodic current and ZnO passivation delayed. The EIS spectra showed that charge transfer resistances of the ZnO/LaCoO3 anodes due to zinc oxidation were higher than that of ZnO electrode
596
Authors: Atchana Wongchaisuwat, Rapat Boonpong, Attera Worayingyong, Marisa Arunchaiya
Abstract: The electrochemical behaviors of zinc anode in the presence of the additives added to the electrodes are presented. LaCoO3 was used as an additive to improve the electrochemical properties of the zinc anode. LaCoO3 synthesized by sol gel method (Schiff base complex) was added to Zn and ZnO powder with the weight ratios of 1:0.05 and 1:0.002 respectively. The electrochemical properties of the zinc and zinc/LaCoO3 electrodes in 6M KOH solution were investigated by voltammetric technique and electrochemical impedance spectroscopy (EIS). The cyclic voltammograms showed that zinc electrodes with LaCoO3 additive gave higher anodic currents and ZnO passivation delayed. The cathodic Tafel plot indicated that the hydrogen overpotential shifted toward more negative value. The EIS revealed that the charge transfer resistances of the zinc/LaCoO3 electrodes were higher than that of zinc electrodes.
581
Authors: Chinwe O. Ikpo, Njagi Njomo, Kenneth I. Ozoemena, Tesfaye Waryo, Rasaq A. Olowu, Milua Masikini, Abd Almonam Baleg, Nazeem Jahed, Priscilla G.L. Baker, Emmanuel Iheanyechukwu Iwuoha
Abstract: The electrochemical dynamics of a film of FeCo nanoparticles were studied on a glassy carbon electrode (GCE). The film was found to be electroactive in 1 M LiClO4 containing 1:1 v/v ethylene carbonate dimethyl carbonate electrolyte system. Cyclic voltammetric experiments revealed a diffusion-controlled electron transfer process on the GCE/FeCo electrode surface. Further interrogation on the electrochemical properties of the FeCo nanoelectrode in an oxygen saturated 1 M LiClO4 containing 1:1 v/v ethylene-carbonate-dimethyl carbonate revealed that the nanoelectrode showed good response towards the electro-catalytic reduction of molecular oxygen with a Tafel slope of about 120 mV which is close to the theoretical 118 mV for a single electron transfer process in the rate limiting step; and a transfer coefficient (α) of 0.49. The heterogeneous rate constant of electron transfer (ket), exchange current density (io) and time constant (τ) were calculated from data obtained from electrochemical impedance spectroscopy and found to have values of 2.3 x 10-5 cm s-1, 1.6 x 10-4 A cm-2 and 2.4 x 10-4 s rad-1, respectively.
1
Authors: Florence Lagarde
Abstract: Molecular imprinting technique allows the preparation of tailor-made materials with high recognition faculty towards target molecules. Molecular imprinted polymers (MIPs) are more robust, easier to manipulate and cheaper than biological receptors, constituting very attractive alternatives to biomolecules as recognition elements in the elaboration of biosensors. In this paper, the principles and advantages of MIP-based impedimetric sensors are described and some examples of application in the biological or environmental fields are given.
499
Showing 1 to 5 of 5 Paper Titles