Papers by Keyword: Collaborative Filtering (CF)

Paper TitlePage

Authors: Dan Er Chen, Yu Long Yin
Abstract: With the rapid growth and wide application of Internet, everyday there are many of information generated and the existence of a large amount of information makes it hardly to mining the wanted information. The recommendation algorithm is the process to alleviative the problem. Collaborative filtering algorithm is one successful personalized recommendation technology, and is widely used in many fields. But traditional collaborative filtering algorithm has the problem of sparsity, which will influence the efficiency of prediction. In this paper, a collaborative filtering recommendation algorithm based on bipartite graph is proposed. The algorithm takes users, items and tags into account, and also studies the degree of tags which may affect the similarity of users. The collaborative filtering recommendation algorithm based on bipartite graph can alleviate the sparsity problem in the electronic commerce recommender systems.
Authors: Jian Sun, Xiao Ying Chen
Abstract: Aiming at the problems of extremely sparse of user-item rating data and poor recommendation quality, we put forward a collaborative filtering recommendation algorithm based on cloud model, item attribute and user data which combined with the existing literatures. A rating prediction algorithm based on cloud model and item attribute is proposed, based on idea that the similar users rating for the same item are similar and the same user ratings for the similar items are similar and stable. Through compare and analysis this paper’s and other studies experimental results, we get the conclusion that the rating prediction accuracy is improved.
Authors: Pu Wang
Abstract: E-commerce recommendation system is one of the most important and the most successful application field of information intelligent technology. Recommender systems help to overcome the problem of information overload on the Internet by providing personalized recommendations to the customers. Recommendation algorithm is the core of the recommendation system. Collaborative filtering recommendation algorithm is the personalized recommendation algorithm that is used widely in e-commerce recommendation system. Collaborative filtering has been a comprehensive approach in recommendation system. But data are always sparse. This becomes the bottleneck of collaborative filtering. Collaborative filtering is regarded as one of the most successful recommender systems within the last decade, which predicts unknown ratings by analyzing the known ratings. In this paper, an electronic commerce collaborative filtering recommendation algorithm based on product clustering is given. In this approach, the clustering of product is used to search the recommendation neighbors in the clustering centers.
Authors: Yae Dai
Abstract: Personalized recommendation systems are web-based systems that aim at predicting a user’s interest on available products and services by relying on previously rated items and dealing with the problem of information and product overload. Collaborative filtering algorithm is one of the most successful technologies for building personalized recommendation system. But traditional collaborative filtering algorithm does not consider the problem of drifting users interests and the nearest neighbor user set in different time periods, leading to the fact that neighbors may not be the nearest set. In view of this problem, a collaborative filtering recommendation algorithm based on time weight is presented. In the algorithm each rating is assigned a weight gradually decreasing along with time and the weighted rating is used to produce recommendation. The collaborative filtering approach based on time weight not only reduced the data sparsity, but also narrowed the area of the nearest neighbor.
Authors: Guang Hua Cheng
Abstract: Electronic commerce recommender systems are becoming increasingly popular with the evolution of the Internet, and collaborative filtering is the most successful technology for building recommendation systems. Unfortunately, the efficiency of this method declines linearly with the number of users and items. So, as the magnitudes of users and items grow rapidly, the result in the difficulty of the speed bottleneck of collaborative filtering systems. In order to raise service efficiency of the personalized systems, a collaborative filtering recommendation method based on clustering of users is presented. Users are clustered based on users ratings on items, then the nearest neighbors of target user can be found in the user clusters most similar to the target user. Based on the algorithm, the collaborative filtering algorithm should be divided into two stages, and it separates the procedure of recommendation into offline and online phases. In the offline phase, the basic users are clustered into centers; while in the online phase, the nearest neighbors of an active user are found according to the basic users’ cluster centers, and the recommendation to the active user is produced.
Authors: Feng Ming Liu, Hai Xia Li, Peng Dong
Abstract: The collaborative filtering recommendation algorithm based on user is becoming the more personalized recommendation algorithm. But when the user evaluation for goods is very small and the user didnt evaluate the item, the commodity recommendation based on the item evaluation of user may not be accurate, and this is the sparseness in the collaborative filtering algorithm based on user. In order to solve this problem, this paper presents a collaborative filtering recommendation algorithm based on user and item. The experimental results show that this method has smaller MAE and greatly improve the quality of the recommendation in the recommendation system.
Authors: Chong Lin Zheng, Kuang Rong Hao, Yong Sheng Ding
Abstract: Collaborative filtering recommendation algorithm is the most successful technology for recommendation systems. However, traditional collaborative filtering recommendation algorithm does not consider the change of time information. For this problem,this paper improve the algorithm with two new methods:Predict score incorporated with time information in order to reflect the user interest change; Recommend according to scores by adding the weight information determined by the item life cycle. Experimental results show that the proposed algorithm outperforms the traditional item in accuracy.
Authors: Feng Ge
Abstract: With the speedy development of network, information technology has provided an unmatched amount of information resources. It has also led to the problem of information overload. However, people experiences and knowledge often do not enough to process the vast amount of usable information. Thus, approaches to help find resources of interest have attracted much attention from researchers. And recommender systems have arrived to solve this problem. Recommender system plays an important role mainly in an electronic commerce environment as a new marketing strategy. Although a varied of recommendation techniques has been developed recently, collaborative filtering has been known to be the most successful recommendation techniques and has been used in a number of different applications. But traditional collaborative filtering recommendation algorithm has the problem of sparsity. Aiming at the problem of data sparsity for personalized filtering systems, a collaborative filtering recommendation algorithm based on user rating similarity and user attribute similarity is given. This approach not only considers the user item rating information, but also takes into account the user attribute.
Authors: Wei Bin Deng, Jin Liu
Abstract: Traditional collaborative filtering algorithms are facing severe challenges of sparse user rating and real-time recommendation. To solve the problems, the category structure of merchandise is analyzed deeply and a collaborative filtering recommendation algorithm based on item category is proposed. A smooth filling technique is used for rating matrix with user preferences and all users rating on the item to solve the sparse problem. A user has different interests on different category. For every item, the nearest neighbors are searched within the category of the item. Not only is the search space of the users’ neighbors reduced greatly, but also search speed and accuracy are promoted. The experimental results show that the method can efficiently improve the recommendation scalability and accuracy of the recommender system.
Authors: Pei Ying Zhang, Ya Jun Du, Chang Wang
Abstract: In this paper we propose a hybrid method of literature recommendation in the academic community. First, we refer the objective recommendation based on HITS algorithm by constructing a directed graph according to the literature citation relation and then select the articles considering the authority and hub score of each article synthetically and add them to the recommendation list. This can narrow the recommendation scope and give a more authoritive recommendation. Second, the subjective recommendation is based on collaborative filtering by comparing the ratings of other similar users for the objects in recommendation list. The difference is we discover the similar user by clustering them. And the experiment shows the method can provide better recommendation results and is timesaving.
Showing 1 to 10 of 66 Paper Titles