Papers by Keyword: Computational Design

Paper TitlePage

Authors: Roberto Naboni, Stefano Sartori, Lorenzo Mirante
Abstract: Advancements in computational tools are offering designers the possibility to change their relationship with materials and establishing new synergies between matter, form and behaviour. This work explores this paradigm by introducing the use of auxetic metamaterials, specifically engineered to obtain properties beyond those found in nature, to generate structures with adaptive curvature obtained from planar construction elements. It is discussed how through programming an initial geometry with the strategic negotiation of several geometrical parameters it is possible to control finely the structural and morphological features of a structure. The paper presents approach, tools and methods for designing auxetics for large scale applications, and use them to create heterogeneous active-bending structures.
53
Authors: Toshiyuki Hirano, J. Teraki, Y. Nishio
641
Authors: Hao Yu, Wei Xu, Sybrand van der Zwaag
Abstract: The degradation of creep resistance in Nickel-based single crystal superalloys is essentially ascribed to their microstructure evolution. Yet there is a lack of work that manages to simulate the effect of alloying element concentrations on microstructure degradation. In this research, a computational model is developed to connect the rafting kinetics of Ni superalloys with their chemical composition, by combining thermodynamics calculation and an energy-based microstructure model. The isotropic coarsening rate and γ/γ misfit stresses have been selected as composition related parameter, and the effect of service temperature, time and applied stress are also taken into consideration to simulate the evolutions of microstructure parameters during creep process. The different generations of commercial Ni superalloys are selected and their chemical compositions are calculated based on this model. The simulated microstructure parameters are validated by the results from experimental results and the existing analytical model. The capability of the model in predicting the microstructure characteristics may provide instructional thought in developing a novel computational guided design approach in Ni superalloys.
967
Showing 1 to 3 of 3 Paper Titles