Papers by Keyword: Dopant Diffusion

Paper TitlePage

Authors: Alexander Mattausch, M. Bockstedte, Oleg Pankratov
Abstract: We investigated the the interstitial configurations of the p-type dopants boron and aluminum and the n-type dopants nitrogen and phosphorus in 4H-SiC by an ab initio method. In particular, the energetics of these defects provides information on the dopant migration mechanisms. The transferability of the earlier results on the boron migration in 3C-SiC to the hexogonal polytype 4H-SiC is verified. Our calculations suggest that for the aluminum migration a kick-out mechanism prevails, whereas nitrogen and phosphorus diffuse via an interstitialcy mechanism.
Authors: Eddy Simoen, A. Satta, Marc Meuris, Tom Janssens, T. Clarysse, A. Benedetti, C. Demeurisse, B. Brijs, I. Hoflijk, W. Vandervorst, Cor Claeys
Abstract: The formation of shallow junctions in germanium substrates, compatible with deep submicron CMOS processing is discussed with respect to dopant diffusion and activation and damage removal. Examples will be discussed for B and Ga and for P and As, as typical p- and n-type dopants, respectively. While 1 to 60 s Rapid Thermal Annealing at temperatures in the range 400-650oC have been utilized, in most cases, no residual extended defects have been observed by RBS and TEM. It is shown that 100% activation of B can be achieved in combination with a Ge pre-amorphisation implant. Full activation of a P-implant can also be obtained for low-dose implantations, corresponding with immobile profiles. On the other hand, for a dose above the threshold for amorphisation, a concentration-enhanced diffusion of P occurs, while a lower percentage of activation is observed. At the same time, dose loss by P out-diffusion occurs, which can be limited by employing a SiO2 cap layer.
Authors: Helmut Mehrer
Abstract: Elemental semiconductors play an important role in high-technology equipment used in industry and everyday life. The first transistors were made in the 1950ies of germanium. Later silicon took over because its electronic band-gap is larger. Nowadays, germanium is the base material mainly for γ-radiation detectors. Silicon is the most important semiconductor for the fabrication of solid-state electronic devices (memory chips, processors chips, ...) in computers, cellphones, smartphones. Silicon is also important for photovoltaic devices of energy production.Diffusion is a key process in the fabrication of semiconductor devices. This chapter deals with diffusion and point defects in silicon and germanium. It aims at making the reader familiar with the present understanding rather than painstakingly presenting all diffusion data available a good deal of which may be found in a data collection by Stolwijk and Bracht [1], in the author’s textbook [2], and in recent review papers by Bracht [3, 4]. We mainly review self-diffusion, diffusion of doping elements, oxygen diffusion, and diffusion modes of hybrid foreign elements in elemental semiconductors.Self-diffusion in elemental semiconductors is a very slow process compared to metals. One of the reasons is that the equilibrium concentrations of vacancies and self-interstitials are low. In contrast to metals, point defects in semiconductors exist in neutral and in charged states. The concentrations of charged point defects are therefore affected by doping [2 - 4].
Authors: Takahisa Okino, R. Takaue, M. Onishi
Authors: W.D. Rau, P. Schwander, A. Ourmazd
Showing 1 to 7 of 7 Paper Titles