Papers by Keyword: Equal-Channel Angular Pressing (ECAP)

Paper TitlePage

Authors: Hanuš Seiner, Petr Sedlák, Lucie Bodnárová, Michal Landa, Jitka Stráská, Miloš Janeček
Abstract: Resonant ultrasound spectroscopy (RUS) was applied to monitor the micro-cracking process occurring during cooling at polished surfaces of an ultrafine-grained AZ31 magnesium alloy. It was observed that although the net of micro-cracks covered only narrow regions along the edges of the sample, its appearance resulted in a strong increase of the attenuation of the free elastic vibrations, and was, thus, sensitively detectable from the evolution of the RUS resonant spectra with temperature. This approach enabled a reliable determination of the threshold temperature for micro-cracking.
Authors: Radomír Kužel, Zdeněk Matěj, Miloš Janeček
Abstract: X-ray diffraction (XRD) studies of ECAP (equal-channel angular pressing) materials were performed after annealing and by in-situ measurements in XRD high-temperature chamber for samples prepared by different number of passes and number of revolutions, respectively. Main attention was given to Cu and Cu-Zr samples. Significant dependence on number of passes was found for ECAP samples. In-situ measurements were focused not only on temperature dependence but also on time evolution of the diffraction line profiles. Evaluation in terms of dislocation densities, correlation and crystallite size and its distribution was performed by our own software MSTRUCT developed for total powder diffraction pattern fitting. Abnormal growth of some grains with annealing is well-known for copper and leads to the creation of bimodal microstructure. Therefore a special care must be given to the evaluation and a model of two Cu components (larger and smaller crystallites) was fitted to the data if an indication of some crystallite growth appears either in the XRD line profile shape or in two-dimensional diffraction patterns.
Authors: Anahita Khorashadizadeh, Myrjam Winning, Dierk Raabe
Abstract: Obtaining knowledge on the grain boundary topology in three dimensions is of great importance as it controls the mechanical properties of polycrystalline materials. In this study, the three dimensional texture and grain topology of as-deformed ultra fine grained Cu-0.17wt%Zr have been investigated using three-dimensional orientation microscopy (3D electron backscattering diffraction, EBSD) measurements in ultra fine grained Cu-0.17wt%Zr. Equal channel angular pressing was used to produce the ultra fine grained structure. The experiments were conducted using a dual-beam system for 3D-EBSD. The approach is realized by a combination of a focused ion beam (FIB) unit for serial sectioning with high-resolution field emission scanning electron microscopy equipped with EBSD. The work demonstrates that the new 3D EBSD-FIB technique provides a new level of microstructure information that cannot be achieved by conventional 2D-EBSD analysis.
Authors: Qing Wei Jiang, Lin Xiao, Xiao Wu Li
Abstract: The temperature-dependent deformation and damage behaviors of ultrafine-grained (UFG) Cu and Ti produced by equal channel angular pressing (ECAP) were investigated and compared. It was found that ECAPed materials with different crystalline structures, e.g. the present fcc Cu and hcp Ti, exhibited significantly distinctive high-temperature deformation and damage characteristics. As the testing temperature is below recrystallization, small- and large-scale cracks or voids formed along the shear bands (SBs) on the surface of UFG Cu, whereas only a few fine shear lines and some non-propagation voids appeared on the surface of UFG Ti. As the temperature is above recrystallization, some small cracks (or voids) formed along grain boundaries and slip deformation took place in many coarsened grains, while only extrusions and intrusions instead of obvious cracks or voids are observable for UFG Ti. The corresponding microstructual changes after compressive deformation, e.g. grain coarsening, were also examined and confirmed by TEM observations.
Authors: Emanuela Cerri, P.P. De Marco, Paola Leo
Abstract: ECAP (Equal Channel Angular Pressing) is a very interesting method for modifying microstructure in producing UFG (Ultra Fine Grained) materials. It consists of pressing test samples through a die containing two channels, equal in cross section and intersecting at an angle Φ. As a result of pressing, the sample theoretically deforms by simple shear and retains the same cross sectional area to repeat the pressing for several cycles. 2-D and 3-D FEM simulations of both one and four ECAP passes of two modified aluminium alloys were performed in order to investigate the deformation state of processed workpiece and, moreover, the effect of the different alloy related Strain Hardening Rate (SHR), die geometry (in terms of variation of channel outer angle) and friction on deformation distribution and magnitude. FEM results showed a lower equivalent plastic strain on the outer side of both cross and longitudinal sections of the billets after one and four passes. Microhardness tests performed on the same sections of ECAP processed billets supported these findings. Moreover, FEM analysis indicated that an higher SHR means a greater strain inhomogeneity on cross section of the processed billet. The same effect was observed by increasing the channel outer angle by computing friction.
Authors: H. Meidani, S. Hossein Nedjad, Mahmoud Nili-Ahmadabadi
Abstract: A new process for fabrication of semisolid billets is introduced, which involves equal channel angular pressing and isothermal heating in the semisolid state. The process leads to a relatively fine globular microstructure. The microstructure evolution during isothermal treatment is studied and it is shown that dendrites breaking up has happened during equal channel angular pressing in semisolid state. The microstructural evolution during isothermal heating and the mechanism for the formation of the globular structure is tried to be understood and also modeled.
Authors: Maurizio Ferrante
Abstract: It is well known that the low ductility of nanostructured materials seriously impairs their commercial development. In its turn that mechanical property is associated to the work-hardening behaviour and the vast literature on this relationship is a measure of its importance. This paper presents a short review of the basic models of work-hardening, dealing initially with conventional “coarse” grain metals and alloys, then moving to the behaviour of sub-microcrystalline materials within the bounds of Al alloys and Equal Channel Angular Pressing. Finally, the interrelations of tensile properties, work-hardening behaviour and microstructure are illustrated by data obtained on a precipitation and a non-precipitation hardening Al alloys, namely Al-4%Cu and AA3004. Results show that low temperature aging results in higher strength and high work hardening rate, besides high ductility. The effects of precipitation and of annealing heat treatments are discussed.
Authors: Wei Wei, Kun Xia Wei, Igor V. Alexandrov, Fei Wang, Jing Hu
Abstract: The composite filament structure was produced in the Cu-5.7%Cr and Cu-12.4%Cr as-cast alloy ingots by using equal channel angular pressing (ECAP) at room temperature. Optical and TEM microstructure, micro-hardness, tensile strength and electrical conductivity of ECAPed samples were investigated. The rotation and spreading of Cr particles took place during ECAP, and resulted in long thin in-situ filaments. The tensile strength increased with the number of the ECAP passes. A strengthening model was recommended to predict the enhancement of the tensile strength in Cu-Cr in situ fibrous composites.
Authors: Seung Chae Yoon, Do Minh Nghiep, Sun Ig Hong, Z. Horita, Hyoung Seop Kim
Abstract: Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy of compaction and sintering. In this study, bottom-up type powder metallurgy processing and top-down type SPD (Severe Plastic Deformation) approaches were combined in order to achieve both full density and grain refinement of metallic powders. ECAP (Equal-Channel Angular Pressing), one of the most promising processes in SPD, was used for the powder consolidation method. For understanding the ECAP process, investigating the powder density as well as internal stress, strain and strain rate distribution is crucial. We investigated the consolidation and plastic deformation of the metallic powders during ECAP using the finite element simulations. Almost independent behavior of powder densification in the entry channel and shear deformation in the main deformation zone was found by the finite element method in conjunction with a pressure dependent material yield model. Effects of processing parameters on densification and density distributions were investigated.
Authors: Soon Vern Yee, Zuhailawati Hussain, Abu Seman Anasyida, Muhammad Syukron, Indra Putra Almanar
Abstract: This study investigated the effect of severe plastic deformation (SPD) and artificial ageing treatment on mechanical properties of cast Al-Mg-Si alloy. 6061-T6 aluminum alloy was remelted and casted into a rod of 13mm in diameter and 60mm in length. The rod samples were then subjected to equal channel angular pressing (ECAP) for SPD process, up to 2 passes, through Bc route. Cast and ECAPed samples were solution heat treated at 530 °C, quenched in water and held at 180 °C at various ageing time to determine the effect of artificial ageing. Cast alloy consisted of α phase grains that were surrounded by Mg2Si particles locating at the grain boundaries. The hardness increased with accumulative applied strain by 2-pass ECAP process with the value of 99.4 Hv. For heat treated samples, maximum hardness was achieved after 5-hour ageing.
Showing 1 to 10 of 491 Paper Titles