Papers by Keyword: Excess Vacancies

Paper TitlePage

Authors: Reinhard Kögler, A. Mücklich, W. Anwand, F. Eichhorn, Wolfgang Skorupa
Abstract: SIMOX (Separation-by-Implantation-of-Oxygen) is an established technique to fabricate silicon-on-insulator (SOI) structures by oxygen ion implantation into silicon. The main problem of SIMOX is the very high oxygen ion fluence and the related defects. It is demonstrated that vacancy defects promote and localize the oxide growth. The crucial point is to control the distribution of vacancies. Oxygen implantation generates excess vacancies around RP/2 which act as trapping sites for oxide growth outside the region at the maximum concentration of oxygen at RP. The introduction of a narrow cavity layer by He implantation and subsequent annealing is shown to be a promising technique of defect engineering. The additional He implant does not initiate oxide growth in the top-Si layer of SOI.
339
Authors: Reinhard Kögler, A. Mücklich, J.R. Kaschny, H. Reuther, F. Eichhorn, H. Hutter, Wolfgang Skorupa
Abstract: Different methods of defect engineering are applied in this study for ion beam synthesis of a buried layer of SiC and SiO2 in Si. The initial state of phase formation is investigated by implantation of relatively low ion fluences. He-induced cavities and Si ion implantation generated excess vacancies are intentionally introduced in the Si substrate in order to act as trapping centers for C and O atoms and to accommodate volume expansion due to SiC and SiO2 phase formation. Especially the simultaneous dual implantation is shown to be an effective method to achieve better results from ion beam synthesis at implantation temperatures above 400oC. For SiC synthesis it is the only successful way to introduce vacancy defects. The “in situ” generation of vacancies during implantation increases the amount of SiC nanoclusters and improves crystal quality of Si in the case of SiO2 synthesis. Also the pre-deposition of He-induced cavities is clearly advantageous for the formation of a narrow SiO2 layer. Moreover, in-diffusion of O by surface oxidation can substitute a certain fraction of the O ion fluence necessary to obtain a buried homogeneous SiO2 layer. The results show that defect engineering for SiC and SiO2 synthesis is working. However, the implementation of a single action is not sufficient to achieve a significant improvement of ion beam synthesis. Only an optimized combination of the different versions of defect engineering can bring about pronounced better results.
321
Authors: Reinhard Kögler, A. Peeva, An. Kuznetsov, J.S. Christensen, Bengt Gunnar Svensson, Wolfgang Skorupa
587
Authors: R. Kalyanaraman, T.E. Haynes, V.C. Venezia, D.C. Jacobson, H.J.L. Gossmann, C.S. Rafferty
177
Showing 1 to 6 of 6 Paper Titles