Papers by Keyword: Gallium Nitride (GaN)

Paper TitlePage

Authors: Seikoh Yoshida, Mitsuru Masuda, Yuki Niiyama, Jiang Li, Nariaki Ikeda, Takehiko Nomura
Abstract: We report on the 288 V-10 V DC- DC converter circuit using AlGaN/GaN HFETs for the first time. The AlGaN/GaN HFET with a large current and a high breakdown voltage operation was fabricated. That is, the maximum drain current was over 50 A, and the minimum on-resistance was 70 mohm. The breakdown voltage was over 600 V. A DC-DC down-converter from input DC 288 V to output DC 10 V was fabricated using these HFETs. It was confirmed that the switching speed of the AlGaN/GaN HFET was faster than that of Si MOSFET. The DC-DC down-converter was fabricated using these HFETs. This converter was composed of a full bridge circuit using four n-channel AlGaN/GaN HFETs. In the case of AlGaN/GaN HFET, a gate switching wave (Vgs) and source-drain wave (Vds) were abrupt compared with those of using Si MOSFETs. In both cases, a stable and constant output DC 10V was also obtained and the conversion efficiency of the converters with AlGaN/GaN HFETs was 84%.
Authors: Lin Lin Liu, Ting Gang Zhu, Michael Murphy, Marek Pabisz, Milan Pophristic, Boris Peres, Tom Hierl
Abstract: The first commercially viable high voltage (>600V) gallium nitride (GaN) Schottky barrier devices are reported. Though GaN does not have any “micropipe” defects, which commonly exists in SiC material, defects like dislocations due to lattice mismatch hamper the material development of GaN high power devices. Improvements in the nitride epitaxial film growth have led to significant reduction of conductive dislocations. Conductive Atomic Force Microscope (CAFM) analysis of conductive dislocations shows only on the order of 103 cm-2 density of conductive dislocations, which are believed to be responsible for the undesired leakage current. GaN diodes compare to SiC or Si devices demonstrate a significant advantage in the thermal resistance. The insulating properties of Sapphire substrates allow fabrication of the devices in TO220 packages with insulating frame and thermal resistance better than 1.8°C/W compare to 3°C/W of SiC or Si devices with insulating frame. Performance of GaN, SiC and Si devices in the switch mode power supplies is compared.
Authors: T. Yamamoto, Hiroshi Katayama-Yoshida
Authors: K.J. Chang, Sun Ghil Lee
Authors: Henryk Teisseyre, Michal Bockowski, Toby David Young, Szymon Grzanka, Yaroslav Zhydachevskii, Izabella Grzegory, Adrian Kozanecki
Abstract: In this communication, the use of gallium nitride doped with beryllium as an efficient converter for white light emitting diode is proposed. Until now beryllium in this material was mostly studied as a potential p-type dopant. Unfortunately, the realization of p-type conductivity in such a way seems impossible. However, due to a very intensive yellow emission, bulk crystals doped with beryllium can be used as light converters. In this communication, it is demonstrated that realisation of such diode is possible and realisation of a colour rendering index is close to that necessary for white light emission.
Authors: T. Mattila, Risto M. Nieminen
Authors: Toshihide Ide, Mitsuaki Shimizu, Xu-Qiang Shen, Shinji Hara, Hajime Okumura, Toshio Nemoto
Authors: Han Yan, Pei Wang
Abstract: The first principles simulations are performed to investigate the adsorption and diffusion of aluminum, gallium and indium atoms on semi-polar gallium nitrides surface, the calculations are performed by using the Car–Parrinello molecular dynamics (CPMD) method. The aluminum ad-atoms adsorption in path 1 and path 3 are much stable than in path 2. The maximum adsorption energy of path1, path2 and path3 are different, which reveal that a different barrier energy pathway between indium ad-atom diffuse along path 1, path2 and path3. Our calculation results reveal that diffusion barriers of aluminum, gallium and indium atoms on semi-polar gallium nitride surface are anisotropy.
Authors: Tong Ho Kim, Soo Jeong Choi, April S. Brown, Maria Losurdo, Giuseppe Valerio Bianco, Maria M. Giangregorio, Giovanni Bruno
Abstract: Nitride materials are critical for a range of applications, including UV-visible light emitting diodes (LEDs). Advancing the performance, reliability and synthesis of AlGaN/GaN and InGaN/GaN heterojunction devices requires a systematic methodology enabling characterization of key metric like alloy composition, thickness and quality possibly in real time. This contribution reports on the real time characterization of the plasma assisted molecular beam epitaxy of AlGaN/GaN and InGaN/GaN heterostructures. Spectroscopic ellipsometry real time monitoring has revealed a number of key process and material iusses, such as the roughening of the GaN templates depending on plasma exposure during the substrate cleaning step, the composition of the alloy and the growth mode. Parameters like the plasma conditions, the surface temperature and the atomic flow ratio are investigated to understand the interplay process-material composition-structure-optical properties.
Authors: H. Larhèche, B. Faure, Claire Richtarch, Fabrice Letertre, R. Langer, P. Bove
Showing 1 to 10 of 264 Paper Titles