Papers by Keyword: High Resolution Transmission Electron Microscopy

Paper TitlePage

Authors: Hiroshi Fukushima, Masanobu Azuma, Yukihiro Kanechika
Abstract: A high temperature HRTEM holder equipped with a W-coil heater was used to make insitu observation of high temperature behavior of Al2O3 very thin (about 1 nm in thickness) protective film on AlN particles. The film was used to prevent AlN particles from damages by moisture. Rapid melting and rapid solidification of very small Al2O3 particles of about 2 nm in diameter were found within about 0.2 seconds. Therefore we concluded that the Al2O3 protective film worked as the sintering additives in the high temperature heating process. In the present study, very small Al2O3 particles were identified by the space between observed lattice fringe images. It was found that a tilt boundary was instantaneously formed and annihilated in an Al2O3 particle. There was also evidence that showed the formation and annihilation of edge dislocations within seven seconds during sintering.
Authors: Teddy Robert, Maya Marinova, Sandrine Juillaguet, Anne Henry, Efstathios K. Polychroniadis, Jean Camassel
Abstract: A new type of 6H zigzag faults has been identified from high resolution transmission electron microscopy (HRTEM) measurements performed on low-doped 4H-SiC homoepitaxial layer grown on off-axis substrates in a hot-wall CVD reactor. They are made of half unit cells of 6H with corresponding low temperature photoluminescence (LTPL) response ranging from about 3 eV to 2.5 eV at liquid helium temperature.
Authors: Aparna Gupta, Chacko Jacob
Abstract: In this paper, we report a novel route to synthesize nano-sized cubic silicon carbide (3CSiC) powder by a chemical vapor deposition (CVD) technique in a resistance-heated furnace. The nanoparticles were deposited on the relatively cold region of a hot-wall quartz reactor. Hexamethyldisilane (HMDS) was used as the source material for both silicon and carbon. The presence of crystalline 3C-SiC was identified using powder x-ray diffraction (XRD) technique. From the XRD data, the crystallite size was also estimated to be in the range of nanometers (nm). A clear evidence of the particle size (~ 10 - 30 nm) was obtained by transmission electron microscopy (TEM). Selected area electron diffraction (SAED) was carried out on the nanoparticle assembly. The ring shaped pattern is a clear indication of polycrystalline particle formation. High resolution TEM (HRTEM) of nanoparticles was performed to study the crystal structure in detail. The nanoparticles were also characterized by Raman spectroscopy at room temperature. Finally, the influence of the growth parameters is also reported in the present study.
Authors: Jérôme Majimel, G. Molénat, F. Danoix, D. Blavette, Gilles Lapasset, M.J. Casanove
Authors: Alessia Le Donne, Simona Binetti, Giovanni Isella, Bernard Pichaud, Michael Texier, Maurizio Acciarri, Sergio Pizzini
Abstract: The knowledge and control of the structural and morphological properties of nanocrystalline silicon is a fundamental requisite for its proper application in photovoltaics. To this purpose, nanocrystalline silicon films grown by Low Energy Plasma Enhanced Chemical Vapour Deposition (LEPECVD) technique on different kinds of substrates were submitted to a systematic characterization using Raman spectroscopy, X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The results showed that the nature of the film substrate induces deep changes in the structural properties of the deposited films. The importance of a Raman in–depth analysis for an accurate determination of the sample structure has been also demonstrated.
Authors: Jian Yu Huang, Yuntian T. Zhu
Authors: Azusa Furihata, Kenji Matsuda, Junya Nakamura, Susumu Ikeno, Yasuhiro Uetani
Abstract: In this work, the age-hardening of Al- 1.0 mass% Mg2Si- 0.4 mass% Mg – 0.5 mass% Ag (ex.Mg-Ag alloy) alloy has been investigated. It showed increase of hardness and age-hardening response. Precipitates in this alloy aged at 523 K have been observed by high resolution transmission electron microscopy (HRTEM) and classified into five types based on characteristics in their HRTEM images.
Authors: Takanori Kiguchi, Naoki Wakiya, Kazuo Shinozaki, Nobuyasu Mizutani
Authors: Takeo Sasaki, Teruyasu Mizoguchi, Katsuyuki Matsunaga, Shingo Tanaka, Takahisa Yamamoto, Masanori Kohyama, Yuichi Ikuhara
Abstract: Interfacial atomic and electronic structures of Cu/Al2O3(0001) and Cu/Al2O3(11 _ ,20) prepared by a pulsed-laser deposition technique were characterized by high-resolution transmission electron microscopy (HRTEM) and electron energy-loss spectroscopy (EELS). It was found that both systems have O-terminated interfaces, irrespective of different substrate orientations. This indicates that Cu-O interactions across the interface play an important role for the Cu/Al2O3 systems.
Authors: Xuemin Pan, Heino Sieber, Stephan Senz, D. Hesse, J. Heydenreich
Showing 1 to 10 of 124 Paper Titles