Papers by Keyword: HOMO-LUMO Gap

Paper TitlePage

Authors: Prabhat Ranjan, Tanmoy Chakraborty
Abstract: The electronic and optical properties of AunV (n=1-8) nanoalloy clusters have been investigated invoking Density Functional Theory (DFT) based descriptors. Conceptual DFT based global descriptors have been used to exhibit experimental properties qualitatively. In this report, the experimental properties of AunV (n=1-8) nanoalloy clusters are correlated in terms of DFT based descriptors viz., HOMO-LUMO energy gap, Hardness, Softness, Electronegativity, Electrophilicity Index and Dipole Moment. The doping of single vanadium atom in gold clusters enhances the stability of gold clusters and also display pronounced odd-even oscillation behaviors. The computed bond length of instant clusters are numerically close with experimental data. The linear regression analysis has been done in terms of correlation between our computed descriptors and their experimental counterparts.
183
Authors: Jun Yan, Yuki Kondo, Xiao Yi Qian, Xiao Meng Fei, Katsuhiko Hosoi, Tamio Mori, Shinichi Kuroda
Abstract: A non-equilibrium atmospheric pressure plasma was applied for the polymerization of the methacrylic monomers such as (2-hydroxyethyl methacrylate (HEMA), methacrylic acid (MAA) and butyl methacrylate (BMA)). These monomers were successfully polymerized with retaining the functional groups of ester or acid. The polymerization mechanism was discussed on the basis of the optical emission spectroscopy (OES) of the plasma. It was strongly suggested that the functional groups could be retained in the polymerization proceeds when the HOMO-LUMO gap of the monomer is close to the energy of Ar metastable atom, which initiates the polymerization.
537
Authors: Muhammad Mus-'ab Anas, Ahmad Puaad Othman, Geri Gopir
Abstract: Density functional theory (DFT) by numerical basis-set calculations of silicon quantum dots (Si-QDs) passivated by hydrogen, ranging in size up to 1.9 nm are presented. These DFT computation results are used to examine and deduce the properties of 14 spherical Si-QDs including its density of state (DOS), and energy gap from the HOMO-LUMO results. The atomistic model of each silicon QDs was constructed by repeating crystal unit cell of face-centered cubic (FCC) structure, then the QDs surface was passivated by hydrogen atoms. The model was relaxed and optimized using Quasi-Newton method for each size of Si-QDs to get an ideal structure. Exchange-correlation potential (Vxc) of electrons were approximated in this system using the Local Density Approximation (LDA) functional and Perdew-Zunger (PZ) functional. Finally, all results were compared with previous experimental data and other similar theoretical approaches, and these results augured well
571
Showing 1 to 3 of 3 Paper Titles