Papers by Keyword: Hydrogenation Properties

Paper TitlePage

Authors: Whan Gi Kim, Soon Chul Ur, Y.G. Lee, Young Jig Kim, Tae Whan Hong
Abstract: In order to fabricate high efficiency, light-weight hydrogen storage materials in an economical way, we have been made to propose a new mechanical alloying process by high-pressure hydrogen induced planetary ball milling(HIMA) using Mg and Ni chips. Microstructural evaluations of the Mg-Ni-H systems synthesized were investigated by scanning electron microscopy and the transmission electron microscopy. X-ray diffraction analysis was also made to characterize the lattice constant, crystallite size and misfit strain. The hydrogenation properties of the particles synthesized were evaluated by automatic PCI (pressure-composition-isotherm). Adopting 66:1 BCR (ball to chips mass ratio) for HIMA process, fully hydrogenated alloys were obtained after 96 hrs of milling, resulting in total hydrogen content of 2.25 mass%.
Authors: Y. Zhang, Y. Tsushio, Hirotoshi Enoki, Etsuo Akiba
Abstract: Novel Mg-Co binary alloys with BCC (body-centered cubic) structure have been successfully synthesized by means of mechanical alloying technique. The formation of BCC structure was confirmed by X-ray diffraction and transmission electron microscopy. Mg-Co alloys were found in the range of Co concentration between 37 and 80 atomic %. All the Mg-Co alloys synthesized absorbed hydrogen below 373K. The maximum hydrogen capacity of these alloys reaches 2.7 mass %. However, desorption of hydrogen at 373 K has not been observed yet. Mg- Co-X (X = B and Ni) ternary alloys with BCC structure have also been synthesized. The lattice parameter of both alloys is lower than that of Mg-Co binary alloys, meanwhile the maximum hydrogen content of both alloys also decreased.
Showing 1 to 2 of 2 Paper Titles