Papers by Keyword: Hydroxyapatite Ceramics

Paper TitlePage

Authors: Vitalijs Lakevics, Janis Locs, Dagnija Loca, Valentina Stepanova, Liga Berzina-Cimdina, Juris Pelss
Abstract: Sorption experiments of bovine serum albumin (BSA) on hydroxyapatite (HAp) ceramic granules, prepared at three temperatures 900°C, 1000°C and 1150°C were performed at room temperature 18,6 °C and phosphate buffer, pH 5,83; 6.38 and 7,39. Thermal treatment contributed to the decrease of bovine serum albumin immobilization indicating that sorption process depended on HAp ceramics specific surface area and pH values of phosphate buffer solution. However, it was confirmed that granule size was also an important parameter for bovine serum albumin adsorption. As a result of these experiments, the most appropriate adsorption conditions and phosphate buffer pH values influence on to BSA sorption were analyzed.
Authors: Ulrike Deisinger, Frauke Stenzel, Günter Ziegler
Authors: Ulrike Deisinger, Frauke Stenzel, Günter Ziegler
Authors: Asako Matsushima, Noriko Kotobuki, Hiroko Machida, Toru Morishita, Yoshinori Takakura, Hajime Ohgushi
Abstract: Since 2001, we have started tissue engineered approach for hard tissue repair using mesenchymal stromal cells (MSCs) derived from patient’s bone marrow. MSCs were culture expanded on culture dish, then applied on various ceramics including hydroxyapatite (HA) ceramics. The MSCs on the ceramics were further cultured in osteogenic media to induce osteognenic differentiation. The differentiation resulted in appearance of bone forming osteoblasts as well as bone matrix on the ceramics, thus we could fabricate the tissue engineered bone. We have reported that the tissue engineered bone is effective for treatment of large bone defect, which is difficult to repair only with artificial materials such as HA ceramics. The present study focused on osteogenic capability of cryopreserved human MSCs derived from patients who already were treated by the tissue engineered bone. The MSCs showed high alkaline phosphatase activity together with abundant bone matrix formation when cultured in osteogenic media. The MSCs also showed in vivo new bone formation when implanted at subcutaneous sites of athymic nude rats. Based on the results, we concluded that the tissue engineering approach is a reliable method to be used in hard tissue regeneration.
Authors: Agata Dudek, Zygmunt Nitkiewicz
Abstract: A range of benefits of implants containing hydroxyapatites results, among other things, from their phase composition and degree of porosity. Poor mechanical properties of hydroxyapatite (HA) ceramics considerably limit its wider use. One of the methods for improvement of poor HA properties is addition of solid solution of Y2O3 in ZrO2. [1-8]. The investigations focused on compositions of ceramic powders based on hydroxyapatite with addition of zirconium dioxide (ZrO2 + 8%wt. Y2O3 and ZrO2 + 20%wt. Y2O3). The powders were axially compacted and then sintered at the temperature of 13000C for two hours. After the process of sintering the samples were subjected to analysis of microstructure, phase composition and geometrical measurements in order to determine volume density in each sample.
Showing 1 to 6 of 6 Paper Titles