Papers by Keyword: Linear Friction Welding

Paper TitlePage

Authors: Ze Min Liu, Zheng Hua Guo, Gang Yao Zhao, Shu Zhang, Ji Luan Pan
Abstract: A 3D finite-elements model of 45# carbon steel of linear friction welding is built with the dynamic explicit code ABAQUS/explicit based on the solution of several key techniques, such as contact boundary condition treating, material properties definition, meshing technology, etc. Then the reliability of the model is validated by comparison with experiments in the literature. Furthermore, numerical simulation and analysis of the linear friction welding process of 45# steel have been carried out by using the model. The temperature field of workpiece, the temperature change of center point of welding interface and the metal flow behavior of welding interface are showed in results.
701
Authors: Tea Sung Jun, Fabio Rotundo, Lorella Ceschini, Alexander M. Korsunsky
Abstract: Linear friction welding (LFW) is a solid state joining process for bonding of two flatedged, complex geometry components through relative reciprocating motion under axial (compressive) forces. Although the proof of principle has been obtained some time ago, recently a number of studies have been published aimed at optimising the joining operations to obtain best joint strength and reduced distortion and residual stress. The present paper is devoted to the study of linear friction welds between components made from aluminium alloy 2124 matrix composite (AMC) reinforced with 25vol% particulate silicon carbide (SiCp). Neutron diffraction was used to measure interplanar lattice spacings in the matrix and reinforcement, and to deduce residual elastic strains and stresses as a function of distance from the bond line. Significant asymmetry is observed in the residual stress distribution within the two components being joined, that may be associated with the difference in the microstructure and texture.
517
Authors: Lorella Ceschini, Alessandro Morri, Fabio Rotundo, Tea Sung Jun, Alexander M. Korsunsky
Abstract: The aim of the present work is to evaluate the possibility of using the Linear Friction Welding (LFW) technique to produce similar and dissimilar joints between a 2024 Al alloy and a 2124Al/25vol.%SiCP composite. In this solid state joining process the bonding of two flat edged components is achieved through frictional heating induced by their relative reciprocating motion, under an axial compressive force. Microstructural characterization of the welds was carried out by optical and scanning electron microscopy, to investigate the effect of LFW both on the aluminium alloy matrix and the reinforcement particles. The mechanical behaviour of the welded specimens was studied by means of hardness and tensile tests. The mechanisms of failure were investigated by SEM analyses of the fracture surfaces. LFW joints in MMCs resulted substantially defect free, with a uniform particle distribution, while a partial lack of bonding at the corners was observed in the others welds. The hardness decreased by approximately 10% in the welded zone, with some data fluctuations due to the complex microstructural modifications introduced by the LFW process. The joint efficiency, evaluated in respect to the UTS, was 90% for the Al alloy joints and 80% for the MMC joints. A decrease in the elongation to failure was measured in all the LFW specimens, probably related to the orientation of the plastic flow in the TMAZ, where the fracture generally occurred.
461
Authors: Antonino Ducato, Davide Campanella, Gianluca Buffa, Livan Fratini
Abstract: In this paper, a critical analysis of the technical difficulties and numerical issues in running simulations of linear friction welding processes is carried out. The focus of the paper is the comparison of different modeling strategies of a numerical analysis for the LFW process of Ti-6Al-4V titanium alloy, for which the thermal aspect strongly influences the mechanical behavior due to the phase transformation, taking place over a definite range of temperature. A 3D simulation campaign, conducted using the FEA code DEFORMTM, was considered in order to show advantages and disadvantages of each approach, including the most critic limitations and complexity in a correct simulation design using two deformable objects.
451
Authors: Tie Jun Ma, Xi Chen, Wen Ya Li
Abstract: The orthogonal experimental design was conducted for linear friction welding of Ti-6Al-4V titanium alloy (TC4). The friction power and joint temperature were collected during the welding process. The influence of process parameters on the axial shortening was analyzed. The suitable process parameters were determined by investigating the joint appearance, the requirement of axial shortening and welding variables during welding. The results provide important reference for establishing process parameters of linear friction welding in practice.
979
Authors: Gianluca Buffa, Marco Cammalleri, Davide Campanella, Livan Fratini, Achilles Vairis
Abstract: Linear friction welding is a solid-state joining process developed for non-axisymmetric components in which the joining of the specimens is obtained through reciprocating motion and pressure. In the process, the friction forces work due to the high frequency oscillation and the pressure between the specimens is converted in thermal energy. In order to design an effective machine, relevant issues derive from the high frequency and the large inertial forces involved in the process. In this study, the authors describe the redesign of a preexisting prototypal machine for LFW processes. A machine redesign is needed when welding high resistant materials, i.e. steels or titanium alloys, with high frequencies, up to 72 Hz. The sensors equipping the machine allows in process measurements of key process variables as temperatures of the specimens, tangential forces, accelerations and speeds. At the same time through the acquired data, the main weaknesses of the machine can be highlighted allowing for effective redesign.
484
Authors: Gianluca Buffa, Davide Campanella, Antonello D'Annibale, Antoniomaria di Ilio, Livan Fratini
Abstract: Linear Friction Welding (LFW) is a solid-state joining process used for non-axisymmetric components. LFW involves joining of materials through the relative motion of two components undergoing an axial force. In the process, the heat source is given by the frictional forces work decaying into heat and determining a local softening of the material and eventually the needed bonding conditions. In the paper, an experimental and numerical campaign is proposed for AA2011 aluminum alloys welding. Different case studies are considered with fixed oscillation frequency and varying pressure at the interface between the specimens. Constant oscillation amplitude and specimens geometry is used. The calculated results permitted to highlight the effects of the process parameters on the material flow determining the soundness of the weld.
1511
Authors: Ying Jie Wang, Yong Zhang, Xu Chao Yuan, Guo Dong Wen, Tie Jun Ma, Da Lu Gao
Abstract: Abstract. In order to study the plastic flow during linear friction welding (LFW), copper particles were added as tracers on the surface of lead block. The flowing state of interior metal in LFW was simulated by the home-made simulator. Results show that the upset speed promotes the plastic flow of metal and the oscillation frequency restrains it. The upset speed influences the plastic flow of metal more significantly than the oscillation frequency. Only when the pressure reaches 800N and the increasing rate reaches 100N/s, can obvious plastic flow of lead happen in the direction perpendicular to the compression. But the plastic flow of lead in the compression direction is visible even if the pressure and its increasing rate are small.
1009
Authors: Xiao Yu Wu
Abstract: The complete process of linear friction welding of titanium alloy TC17 is simulated using the finite element analysis software ANSYS in this paper. A full structural-thermal coupled transient model is also developed. The results of the temperature field and stress field are discussed. The influence of welding parameters on the temperature field is analyzed. The method will provide guidance for the development of the linear friction welding process.
126
Authors: Lorella Ceschini, Alessandro Morri, Fabio Rotundo
Abstract: The widespread use of metal matrix composites (MMC) is often limited due to the difficulties related to their joining by means of traditional fusion welding processes. The aim of this work was to evaluate the effect on microstructure and mechanical properties (hardness and tensile strength) of two different friction welding techniques used for joining two Al-based metal matrix composites. In particular, Friction Stir Welding was applied to a 6061 (Al-Mg-Si) alloy matrix, reinforced with 20vol.% of Al2O3 particles (W6A20A), while Linear Friction Welding was applied to a 2124 (Al-Cu-Mg) alloy matrix reinforced with 25vol.% of SiC particles (AMC225xe). Both the welding processes permitted to obtain substantially defect-free joints, whose microstructures was found to be dependent on both the initial microstructure of the composites and the welding processes. Hardness decrease was in the order of 40% for the FSW joint and of 10% for the LFW joint, mainly due to overaging of the matrix induced by the frictional heating, while the joint efficiency in respect to the ultimate tensile strength was 72% and 82%, respectively. Elongation to failure increased in the FSW joint due to coarsening of precipitates, whereas it decreased in the LFW joints due to the fibrosity in the thermomechanically altered zone. Fracture surface analysis showed good matrix/reinforcement interface for both composites.
85
Showing 1 to 10 of 27 Paper Titles