Papers by Keyword: Material Removal Function

Paper TitlePage

Authors: Di Zheng, Yong Jiang Yu, Xian Hua Zhang, Xiao Jun Zhao, Yuan Wang, Yong Jie Shi, Feng Lu
Abstract: The objective of this paper is to investigate the effect of shape and size of polishing pad on the material removal characteristics in the NC polishing. The material removal model was established based on Preston equation. The law of the effect of shape and size of polishing pad on the model was simulated. Experiments were carried out. Results showed that both of the shape and size of polishing pads influence the shape of material removal curves, polishing efficiency, and surface roughness. The amount of removed material increases with the increasing of size of polishing pad.
Authors: Hao Bo Cheng, Jing Feng Zhi, Suet To, Yong Tian Wang
Abstract: This paper proposes a novel wheel-shaped grinding/polishing tool, which is designed to be controlled on both the self-rotation around its axis and the co-rotation around vertical axis Z at the specified speeds respectively. Therefore, the surface material of the workpiece can be removed by virtue of self-rotating motion. On the other hand, the co-rotating motion will also change the manufacturing orbit continually. To analyze the characteristics of the tool, material removal in the manufacturing zone on the workpiece surface is first established through theoretical modeling. Subsequently, a good evaluating method, i.e. power spectral density, for analyzing the frequency spectrum features of material removal function in computer-controlled optical grinding and polishing is introduced in detail. By simulation, the power spectral density of the material removal function was cut into several parts, some frequency with low amplifies of material removal function were removed, and the modified material removal function reflected the actual processing status, which was helpful in removing some residual high frequency errors on the surface of the workpiece. Finally, the high amplitude such as at high frequency of 110mm-1 and 210mm-1 was reserved and some other low amplitude frequencies were removed.
Authors: Dong Fang Wang
Abstract: In order to get ultra-smooth surface without subsurface damage efficiently for fused silica, the atmospheric pressure plasma processing (APPP) is developed. It is based on chemical reaction between active radicals excited by plasma and workpiece surface atoms, so the subsurface damage caused by contact stress can be avoided and atomic-level precision machining can be achieved. In this paper, the influence on material removal function by the key factors of APPP including the flow rate of reaction gases, input power, and processing distance are discussed. In addition, by the regression model a quantitative mathematical model of the material removal function of the atmospheric pressure plasma processing on fused silica is established. And this model is verified by experimental data.
Showing 1 to 3 of 3 Paper Titles