Papers by Keyword: Metallic Substrate

Paper TitlePage

Authors: Jing Jin Wu, Hong Cai Wu, Ce Zhou Zhao
Abstract: After reviewing the development of CdTe solar cells, the merits of superstrate and substrate configuration have been discussed. Then, the material process techniques are investigated according to their application, following with discuss at the challenges.
Authors: François Lewis, Benoit Maheux-Lacroix, Stephane Turgeon, Diego Mantovani
Abstract: Metallic intravascular stents are medical devices commonly made of 316L stainless steel or nitinol used to scaffold a biological lumen, most often diseased arteries, after balloon angioplasty. Stenting procedures reduce the risk of restenosis, but do not eliminate it completely. Indeed, restenosis remains the principal cause of clinical complications, leading to up to 30 % of failure after 3 months of implantation. During the last few years, several works have been focused on the development of an appropriate coating able to act as a carrier for specific anti-restenosis drugs. Moreover, this coating would act as an anti-corrosive barrier, thus inhibiting the release of potentially toxic ions. Actually, the main challenges in stent coatings are to synthesize a biocompatible polymer coating resistant to blood flow, wall shear stress and tensile force after the stent deployment which results in a permanent strain of up to 25%. The adhesion and chemical resistance after deployment are critical properties to investigate for the improvement of the long-term reliability of polymer coated stent. The aim of this study was to evaluate the effect of a 25% equivalent plastic deformation on chemical, mechanical and adhesion properties of Teflon-like films deposited on 316L stainless steel. These properties were studied by chemical spectroscopy and atomic force microscopy. Teflon-like films were deposited by pulsed plasma glow discharges on flat electropolished 316L stainless steel. An original method has been developed to induce the deformation, and preliminary results have showed that the 12 nm thick Teflon-like films successfully resist to deformations of up to 25%.
Authors: Maryse Touzin, P. Chevallier, Stéphane Turgeon, Paula Horny, Diego Mantovani
Abstract: Commonly made of 316L stainless steel and nitinol, metallic intravascular stents are medical devices used to scaffold a biological lumen, most often diseased arteries. While stenting procedures reduce the risk of restenosis, they do not eliminate it completely. Furthermore, other common complications observed are thrombosis, inflammation and corrosion of the stents. The corrosion of the device is induced by blood flow which provokes a degradation of its mechanical properties and leads to a high risk of release of potentially toxic metallic compounds, such as nickel-based oxides and metal ions. To lower these clinical complication rates and to prevent the corrosion of the metallic stent structure, coated stents have been developed during the last decade. Indeed, the coating is expected to improve the surface biocompatibility and corrosion resistance without compromising the stainless steel mechanical properties required for the stent implantation. The Food and Drug Administration (FDA) has already provided guidance on a series of non-clinical test protocols, methods and reports to evaluate the safety and effectiveness of intravascular stents. Properties such as the stability, durability, and adhesion of a stent coating, prior and after deployment, must be clearly assessed to demonstrate its efficiency. This study wants to evaluate the effectiveness against general and local corrosion of an ultra-thin fluorocarbon film deposited by plasma on pre-treated stainless steel. Cyclic polarization tests were used to measure the coating capacity to protect the substrate from localized corrosion and Tafel plot corrosion measurements were used to evaluate the general corrosion behaviour of uncoated and coated, flat and deformed samples.
Authors: Ri Han Chi, Yue Fei Yu, Zhi Jia Yu, Guo Zhu Kuang
Abstract: The fabrication of metallic ultra water repellent surfaces is of great significance to many industrial and scientific areas. Ultra water repellent surfaces on aluminum alloy substrates were fabricated with acidic etching and fluoroalkyl silane coating method. The prepared surfaces exhibit good water repellent behaviors with water contact angles (WCA) larger than 150° and contact angle hysteresis (CAH) about 5°. The resultant surfaces were examined using scanning electron microscope (SEM). The results show that a kind of hierarchical roughness in micro-nanoscale is formed, which plays a key role for the fabrication of ultra water repellent surfaces. Fancy phenomena such as "chair-shaped flow", "flow orientation" and "sinusoidal flow" were observed when water flowed in a rectangular conduit constructed with one ultra water repellent wall and one super hydrophilic wall on the opposite side. The observations reveal some characteristics of water flow in ultra water repellent conduits.
Authors: Andreja Benčan, Janez Holc, Marko Hrovat, Goran Dražič, Marija Kosec
Authors: Jiechao Jiang, Efstathios I. Meletis, Z. Yuan, Jian Liu, Jenny Weaver, Chong Lin Chen, B. Lin, V. Giurgiutiu, R.Y. Guo, A.S. Bhalla, D. Liu, K.W. White
Abstract: We report the fabrication of the orientation preferred structures in BaTiO3 thin films on Ni substrates using pulsed laser deposition. Transmission electron microscopy studies showed that the films consist of crystalline structures of tetragonal BaTiO3. More than 60% of BaTiO3 grains in the films exhibit nearly the same crystallographic orientation with their a-axis lying in the film plane and the [011] direction parallel to the growth direction. Such orientation preferred structures were grown on a Ni nanocrystalline buffer layer. This result demonstrated the possibility of approximating an oriented single crystalline ceramic oxide structures on metallic substrates.
Authors: Yu E Yang, Cun Fu He, Bin Wu
Abstract: Microwaves penetrate inside of low loss dielectric materials and they are sensitive to the presence of internal interfaces and non-uniformities. This allows microwave nondestructive inspection techniques to be utilized for inspecting dielectric in metallic substrate. This article simulated Microwave inspecting thickness and delamination in layered-dielectric in metallic substrate, using open-ended rectangular waveguide probe. Effective reflection coefficient of microwave is used in the detection and evaluation to thickness or delimination in the media. This paper optimized the detection frequency and standoff, which provide a reference for the experimental study.
Authors: Xiao Xiao Zhang, Kun Su, Fan Lin Zeng, Yu Wen Zhang, Qi Fei Zhang, Wei Zhong Ding
Abstract: Metal supported catalysts in hydrogen production reactor has a very broad application prospect. However, the film adhesion of active coating with the metal support is the key problem which needed to be solved urgently. In this paper, FeCrAl alloy was chosen as the metallic substrate. The effects of oxidation temperature and time on the morphology, crystal phase and element composition of the metal surface were investigated by XRD, SEM and EDAX. The results show that after pre-treatment of FeCrAl Metallic Substrate,a dense transition layer of α-Al2O3 formed on the surface of the metallic support. Thus the oxidized α-Al2O3 layer and the γ-Al2O3 coating could combine together better. The optimum pre-treatment condition is at 950°C for 10h in air atmosphere.
Showing 1 to 8 of 8 Paper Titles