Papers by Keyword: Microalloying Elements

Paper TitlePage

Authors: Ji Fa Zhong, Zi Qiao Zheng, Xian Fu Luo
Abstract: In this work, a new ultra-high strength Al-Cu-Li alloy was investigated. The ultimate strength, yield strength and elongation of the newly designed alloy by artificial aging are 647.2MPa, 609.4MPa and 7.3% respectively. Among the main strengthening phases of T1, θ′ and S′ in the experimental alloys, T1 is the dominant one. The combined addition of Mg and Ag promoted the precipitation of T1 and increased the strength of the new alloy greatly. Zn had a similar effect as Ag during the aging strengthening progress, when added with Mg. Among the three micro-alloying elements, Mg, Ag and Zn, Mg had the strongest influence on age strengthening. Compared with the combined additions of (Mg +Ag) and (Mg + Zn), (Ag + Zn) had the weakest influence on aging strengthening. Pre-deformation before aging promoted the precipitation of T1 phase which weakened the influence of micro-alloying elements (Mg, Ag and Zn) on strengthening the alloys and minished the strength difference between alloy containing (Mg + Ag + Zn) and alloys containing two of them.
Authors: Marion Bellavoine, Myriam Dumont, Josée Drillet, Philippe Maugis, Véronique Hebert
Abstract: Microalloying elements Ti and Nb are commonly added to high-strength Dual Phase steels as they can provide efficient means for additional strengthening due to grain refinement and precipitation strengthening mechanisms. In the form of solute elements or as fine carbonitride precipitates, Ti and Nb are also expected to have a significant effect on the microstructural changes during annealing and especially on recrystallization kinetics. The present work investigates the influence of microalloying elements Ti and Nb on recrystallization in various cold-rolled Dual Phase steel grades with the same initial microstructure but different microalloying contents. Using complementary experimental and modeling approaches makes it possible to give some clarifications regarding both the nature of this effect and the comparative efficiency of Ti and Nb on delaying recrystallization. It is shown that niobium is the most efficient micro-alloying element to impede recrystallization and that the predominant effect is solute drag.
Authors: J.I. Verdeja, J.A. Pero-Sanz, J. Asensio
Abstract: The present work describes the correlation between the microstructure and the mechanical properties of multiphase steels processed through a Continuous Annealing Process Line (CAPL). The mechanical and microstructural properties of one of the former experimental steel compositions was also processed via Batch Annealing (BA) and the results have been included for comparison reasons.
Authors: Tomo Ogura, Shoichi Hirosawa, Alfred Cerezo, Tatsuo Sato
Abstract: The quantitative correlation between strength, ductility and precipitate microstructures in the vicinity of grain boundaries with precipitate free zones (PFZ) was evaluated for Al-Zn-Mg(-Ag, Cu) alloys using transmission electron microscopy (TEM), three-dimensional atom probe (3DAP) and tensile test. In the Al-Zn-Mg ternary and Cu-added alloys aged at 433K, larger widths of PFZ were observed by TEM and resulted in lower elongations to fracture, independent of the size of grain boundary precipitates. On the other hand, the elongation of the Ag-added alloy was higher, if compared at the same levels of proof stress, due to the much smaller width of PFZ. This strongly suggests that PFZ is harmful to fracture of the investigated alloys. From a 3DAP analysis, furthermore, it was revealed that Ag and Cu atoms are incorporated in the nanoclusters from the initial stage of aging. In this work, the elongation was well correlated to the width of PFZ, size of grain boundary precipitates and the level of proof stress, enabling to predict ductility of the alloys from known microstructural factors.
Authors: Henryk Adrian, Marta Pelczar, Anna Adrian, Joanna Augustyn-Pieniążek
Abstract: The effect of B and microalloying additions of V, V+Ti, V+Nb on austenite grain growth of low alloy steel containing 0.3% C, 1 % Cr and 0.2 % Mo was investigated. As a measure of austenite grain size the mean chord length of austenite grains was assumed. The boron content in investigated steel was in the range of 0 to 0.008 %. The investigations were carried out in austenitising temperature range of 850 to 1100oC. Using the thermodynamic model the contents of undissolved compounds of carbonitride V(C,N) and boron nitride BN were calculated and the effect of undissolved compounds content on austenite grain size was investigated. Obtained results showed, that vanadium content below 0.1 % was ineffective as austenite grain growth inhibitor of boron containing steel and austenite grain size of steel was higher compare to non-alloyed steel. The most effective for decreasing of austenite grains size of boron containing steel was addition of 0.18 % V + 0.03 % Nb
Showing 1 to 10 of 10 Paper Titles