Papers by Keyword: Misorientations

Paper TitlePage

Authors: W. Bevis Hutchinson
Abstract: The paper surveys various types of dislocation substructure that are created by plastic deformation in metals. Special reference is made to those substructures that accommodate sharp misorientations as these are of fundamental importance to the nucleation of recrystallisation. Several different mechanisms can give rise to high misorientations; these are discussed in terms of the factors that control them and their relationships to orientation and texture. Different mechanisms for nucleation of recrystallisation may occur depending on the type of substructure, allowing some practical control over the final recrystallised texture.
Authors: Ph. Gerber, Jacek Tarasiuk, Brigitte Bacroix
Authors: Jan Pospiech, Zdzislaw Jasieński, M. Ostafin, Robert A. Schwarzer
Abstract: The change of the deformation path leads to destabilization of the substructure and affects the texture of the deformed metal. The observed changes of texture and microstructure are, as a rule, significant and their characteristics depend on the geometry of the deformation process. Previous investigations on copper (and copper alloy) samples after deformation by rolling and channel-die compression were based on X-ray pole figure measurements and on observations in the light microscope. Hereby only global texture and structural characteristics have been obtained. The present study is mainly based on measurements of individual crystal orientations performed by ACOM (Automated Crystal Orientation Measurement, “Automated EBSD”) in the SEM which enables a precise local analysis of the investigated phenomena. For the channel-die experiments, (1 1 2)[1 1 -1] and (1 1 2)[1 -1 0] oriented copper single crystals have been used. After pre-deformation, a second deformation step has been carried out in transverse direction. The {1 1 2}<1 1 0> orientations are destabilized by channel-die compression, and clusters of layers develop which are composed of complementary {1 1 0}<1 1 2> components. The deformation process in polycrystalline sheets after rotating the rolling direction leads again to a distinct disintegration of the microstructure and destabilization of the b fiber. This process of microstructure reorganization after pre-deformation is fast and of high dynamics.
Authors: Dorte Juul Jensen, David J. Rowenhorst, Søren Schmidt
Abstract: Effects of the crystallographic misorientation across boundaries between recrystallising grains and the neighbouring deformed matrices are discussed and exemplified by recrystallisation investigations of fcc metals. Classic misorientation observations are reviewed in the introduction, whereas the main parts of the paper focuses on two special boundary migration phenomena observed by in-situ recrystallisation experiments; namely protrusions and facets.
Authors: Leo Kestens, Kim Verbeken, R. Decocker, Roumen H. Petrov, Patricia Gobernado, S. Eric Offerman
Abstract: It is often assumed that the texture formation during solid state transformations in low carbon steels critically depends on the local crystallographic misorientation at the interface between transformed and not yet transformed material volume. In some cases, a theoretical crystallographic orientation relation can be presumed as a necessary prerequisite for the transformation to occur. Classical examples of such misorientation conditions in steel metallurgy are the orientation relations between parent and product grains of the allotropic phase transformation from austenite to ferrite (or martensite) or the hypothetical <110>26.5º misorientation between growing nuclei and disappearing grains in a recrystallization process. One way to verify the validity of such misorientation conditions is to carry out an experiment in which the transformation is partially completed and then observe locally, at the transformation interface, whether or not the presumed crystallographic condition is complied with. Such an experiment will produce a large set of misorientation data. As each observed misorientation Dg is represented by a single point in the Rodrigues-Frank (RF) space, a distribution of discrete misorientation points is obtained. This distribution is compared with the reference misorientation Dgr, corresponding to a specific physical condition, by determining the number fraction dn of misorientations that are confined within a narrow misorientation volume element dw around the given reference misorientation Dgr. In order to evaluate whether or not the proposed misorientation condition is obeyed, the number fraction dn of the experimentally measured distribution must be compared with the number fractions dr obtained for a random misorientation distribution. The ratio dn/dr can be interpreted as the number intensity fi of the given reference misorientation Dgr. This method was applied on the observed local misorientations between the recrystallizing grains growing into the single crystal matrix of a Fe-2.8%Si alloy. It was found that the number intensity of the <110>26.5º misorientation increased with a factor 10 when the misorientation distribution was evaluated before and after the growth stage. In another example the method was applied to the misorientations measured at the local interface between parent austenite and product martensite grains of a partially transformed Fe-28%Ni alloy. It could be established that the Nishiyama- Wasserman relations ({111}g//{110}a <112>g//<110>a) prevail over the Kurdjumov-Sachs relations ({111}g//{110}a and <110>g//<111>a) although a considerable scatter was observed around either of the theoretical correspondences. A full parametric misorientation description was also applied to evaluate the relative grain boundary energies associated with a set of crystallographic misorientations observed near triple junctions in Fe-2%Si. In this instance it was found that the boundaries carrying a misorientation of the type <110>w carry a lower interfacial energy than the <100> or <111> type boundaries.
Authors: Philippe Bocher, Mohammad Jahazi, Lionel Germain, Priti Wanjara, Nathalie Gey, Michel Humbert
Abstract: The presence of hcp regions with grains having relatively close orientations has been reported in commercial near alpha titanium billets (IMI 834, Ti 6246, etc). The size of these textured regions (called macrozones) is significantly larger than the average grain size of the microstructure observed after thermomechanical processing. The elongated shape of these large hcp regions suggests that they are eventually related to large prior b grains that pancaked during the ingot break down process. In this contribution, Orientation Image Microscopy was used to study the relationship between the hcp local microtexture heterogeneities and the prior b orientations. Specifically, the orientations of the primary (equiaxed) ap grains and the secondary (lamellar) as colonies produced after the transformation of the b phase were discriminated from OIM maps. Furthermore, from the as inherited OIM map, it was possible to reconstruct the corresponding b OIM map over large regions. The analysis showed that the large hcp macrozones observed in the as received material are not related to corresponding bcc macrozones. However, within an hcp macrozone, various clusters of b grains with similar orientations can be found. In such coherent regions, randomly orientated b grains were also observed, which could be related to microstructural changes during deformation (continuous dynamic recrystallization) as suggested by hot deformation results.
Showing 1 to 8 of 8 Paper Titles