Papers by Keyword: Multi-Modal Microstructure

Paper TitlePage

Authors: Chun Hui Yang, Ilchat Sabirov, Jonathan Mullins, Peter D. Hodgson
Abstract: Nanostructured and ultra-fine grained metals have higher strength but extremely limited ductility compared to coarse grained metals. However, their ductility can be greatly improved by introducing a specific range of grain sizes in the microstructures. In the paper, multiscale unit cell approach (UCA) is developed and applied to predict the averaged stress-strain relations of the multiscale microstructure metals. The unit cell models are three-phase structured at different scale lengths of 100 nm, 1 μm and 10 μm with different volume fractions and periodic boundary conditions. The contributions of multi-scale microstructures to the macroscopic structural properties of metals are also studied using a analytic approach—two-step mean-field method (TSMF), where three microstructural parameters are introduced and thus mechanical properties such as strength and ductility are presented as a function of these parameters. For verification of these proposed numerical and theoretical algorithms, the structural properties of the pure nickel with three-grain microstructures are studied and the results from FEA and the proposed theory have good agreement.
Authors: Osman Ertörer, Troy D. Topping, Ying Li, Yong Hao Zhao, Wes Moss, Enrique J. Lavernia
Abstract: The room temperature tensile behavior of commercially pure titanium (CP-Ti), cryomilled under different conditions and forged quasi-isostatically into bulk form, was studied in detail. The results demonstrate that the ductility of cryomilled titanium can be improved, and that the mechanical properties can be tailored using three specific strategies: the use of liquid argon as cryomilling media, introduction of coarse grained regions, and low temperature heat treatment. Cryomilling in a liquid argon environment, which differs from the widely used nitrogen cryogenic environment, was found to have a particularly strong influence on ductility, as it prevents nitrogen embrittlement. The contribution of coarse grains and heat treatment to ductility are also introduced and discussed using a comparative approach.
Showing 1 to 2 of 2 Paper Titles