Papers by Keyword: Nonlinear Finite Element Analysis

Paper TitlePage

Authors: Jin Song Gui, Zhen Guo Li, Qing Meng, Bo Zhang
Abstract: The value selection of m has a greater influence on the internal force of pile. So, how to determine the value of m is very important for the “m” method. In this paper, a geotechnical finite element software PLAXIS is used for the nonlinear finite element analysis of elastic long pile under the horizontal force action. By using the calculated maximum bending moment and the maximum displacement at the ground, and combined with the related formula for “m” method given in 《Code for Pile Foundation of Harbour Engineering》, a more accurate value of m can be obtained conveniently. Because this method is simple and practical, it can provide a useful reference for the project designer to determine a reasonable value of m.
Authors: Tai Quan Zhou, Yuan Hua
Abstract: The wet sprayed concrete technique has good virtue of improving the working condition within the tunnel, fewer reflective concrete loss and higher sprayed concrete quality. The concrete mixed with polypropylene fiber could improve the concrete inner structure, the flexural strength, tensile strength and anti-penetrating ability. The application of the wet sprayed polypropylene fiber reinforced concrete in the construction of tunnel lining structure could improve the stability of tunnel rock mass. The nonlinear finite element analysis is performed on rock mass stability of the railway tunnel lining structure and the rock mass stability is analyzed both for the un-lining tunnel and the lining tunnel. The computation result shows that the rock mass plasticity zone distribution with the lining structure is fewer than that without lining structure. To measure the deformation behavior, tunnel deformation measurement sensors are installed in the railway tunnel transverse section. The measured railway tunnel deformation result also shows that the lining structure deforms little and the rockmass is in stable state.
Authors: Jin Ling Wang
Abstract: The design of cold punching mould CAD/CAM and the combination of CAE analysis can advance analysis of stamping process program, eventually get ideal stamping parameters, realize design automation, save resources and reduce dependence on experience, reduce the demand for skilled workers. This paper, by using nonlinear dynamic finite element software ANSYS/ls-dyna continuous function, simulation of sheet metal forming process and unloading plate deformation, forming process, at any time throughout the von mises stress nephogram should rebound and strain values and unloading plate material as a result, analysis help us better understand the changes of the internal material sheet metal stamping process.
Authors: Feng Qi Wu, Jin Zhang, Wen Qing Yao
Abstract: The wheel-rail contact is a boundary condition highly nonlinear complex problem, which need to accurately track the wheel-rail movement and the interaction contact stress between wheel-rail before and after the occurrence of wheel-rail contact, nonlinear contact stress of wheel-rail is analyzed through the contrast of finite element analysis and the actual detection, the experimental and theoretical calculation results show the compliance of the finite element model of wheel-rail, at the same time also point out some differences of theoretical calculation and actual manufacturing, which establish the theoretical and experimental foundation for the advanced research movement friction etc..
Authors: M. Joshani, S.S.R. Koloor, Redzuan Abdullah
Abstract: Composite slab construction using permanent cold-formed steel decking has become one of the most economical and industrialized forms of flooring systems in modern building structures. Structural performance of the composite slab is affected directly by the horizontal shear bond phenomenon at steel-concrete interface layer. This study utilizes 3D nonlinear finite element quasi-static analysis technique to analyze the shear bond damage and fracture mechanics of the composite slabs. Fracture by opening and sliding modes of the plain concrete over the corrugated steel decking had been modeled with concrete damaged plasticity model available in ABAQUS/Explicit module. The horizontal shear bond was simulated with cohesive element. Cohesive fracture properties such as fracture energy and initiation stress were derived from horizontal shear bond stress versus end slip curves. These curves were extracted from bending tests of narrow width composite slab specimens. Results of the numerical analyses match the experimental results accurately. This study demonstrated that the proposed finite element model and analysis procedure can predict the behavior of composite slabs accurately. The procedure can be used as a cheaper alternative to experimental work for investigating the ultimate strength and actual fracture and damage behavior of steel-concrete composite slab systems.
Authors: Jun Song Liang, Jie Li
Abstract: The fatigue problem of concrete has long been studied through many different methods. However, the fatigue process and failure patterns of concrete structures have never been well simulated due to the lack of comprehensive understanding of the material properties under fatigue loads. In order to carry out an accurate simulation of the fatigue behavior of concrete structures, this paper proposes a new damage theory based fatigue constitutive model for concrete. The present model adopts two damage variables to describe the degradation of macro mechanical properties of concrete under tension and compression, respectively. And the tensile and compressive damage evolutions are related to the corresponding effective stress spaces. Specifically, by implementing the present model into the nonlinear finite element package, the bending fatigue process of a concrete beam is simulated. Meanwhile a set of numerical tests are presented, through which the validity and effectiveness of the proposed model for the simulation of concrete structures are illustrated.
Authors: Hong Yan Qin, Xiao Lan Ge
Abstract: Most domestic automobile factories use test method to design rubber engine-mount, which wasting of time and energy. The design optimization of engine-mount is studied by virtue of ANSYS. In order to satisfying three directions stiffness requires of engine mount, the optimization math model has been established, mount material and geometry parameters have finally been calculated by selecting appropriate arithmetic.
Authors: M. Koyuncu, L. Lejeune, S.M. Pilgrim, W.B. Carlson
Authors: Feng Ge Li, Gen Tian Zhao, Feng Yun Li
Abstract: Based on experiment of two mixed frame with SRC columns and steel beam under low-reversed cyclic loading, hysteresis behavior, ductility, energy dissipation are studied. The test results show that the mixed frame with SRC columns has better seismic performance. The nonlinear finite element analysis on the seismic behavior of the frame specimen was conducted using Openness developed by the Pacific Earthquake Engineering Research (PEER) Center. The calculated results are much coincided with the tested results.
Showing 1 to 10 of 53 Paper Titles