Papers by Keyword: Osteoclasts

Paper TitlePage

Authors: Ruggero Bosco, Michele Iafisco, Jeroen van den Beucken, Sander C.G. Leeuwenburgh, John A. Jansen
Abstract: The possibility to develop a bone implant with bioactive aspects and in situ drug-delivery properties, in order to provide local treatment in vivo, is a big challenge. Where conventional surface modifications for bone implants focused on the deposition of ceramic (mostly calcium phosphate, CaP) coatings, current surface engineering approaches attempt to incorporate active features to render bone implant surfaces capable to direct biological performance. Biomimetic apatite nanocrystals (nAp) represent, among the CaPs, an elective material for bone applications and their surface functionalization with drugs allows them to act as a drug-delivery vehicle. Since load-bearing bone implants are increasingly used in patients with compromised health conditions, surface engineering is important to warrant the performance of these implants under such conditions. In view of this, bisphosphonates (BPs) represent a treatment modality for a variety of disorders of bone metabolism associated to bone loss, including Paget's bone disease, osteoporosis, fibrous dysplasia and bone metastases. In this work, we have synthesized and characterized bioinspired nAp and evaluated their functionalization with alendronate. In vitro tests will be used to evaluate the efficacy of the functionalized compound to impede the formation of osteoclasts and to show that alendronate-functionalized nAp can significantly reduce osteoclasteogenesis. Finally, alendronate-functionalized nAp (FnAp) has been deposited on titanium implants via the electrospray deposition technique in order to develop inorganic-organic coatings for bone implants with improved functionality.
475
Authors: Ilaria Cacciotti, Giorgia Lehmann, Antonella Camaioni, Alessandra Bianco
Abstract: In this work, the sol-gel synthesis of AP40 bioactive glass system was reported. The obtained powder was fully characterised in terms of microstructure, composition and thermal behaviour by X-ray diffraction (XRD) measurements, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry and differential thermal analysis (TG-DTA). In vitro dissolution tests were performed in order to assess the degradation behaviour of sol-gel derived AP40 samples thermally treated at different temperatures. Finally, preliminary results on cytocompatibility are reported, based on bioresorption activity of human peripheral blood monocytes differentiated into osteoclasts on sintered disks.
41
Authors: Y. Ramaswamy, Besim Ben-Nissan, R. Roest, D. Haynes, Hala Zreiqat
Abstract: Titanium alloy has been used as a material for orthopaedic implants, however drawbacks still exist. Considerable efforts have been taken to modify the surface structure of the implant material and improve the biological performance. Previously we have demonstrated that biomaterials surface modification has a significant effect on the regulation of osteogenesis. We have investigated the behaviour of human osteoclasts on sol-gel coated carbonated hydroxyapatite on anodized titanium alloy. Osteoclasts cultured on the modified surface were able to attach and spread, exhibiting the characteristic peripheral brush border. Successful differentiation of the monocytes into osteoclasts and their attachment to the coated surface and the formation of resorption-like imprints indicated that carbonate hydroxyapatite (CHAP) coated titanium alloy play a significant role in regulating the functional activity of osteoclasts.
709
Authors: Ken-Ichi Tezuka, Yoshitaka Wada, Masanori Kikuchi
601
Showing 1 to 4 of 4 Paper Titles