Papers by Keyword: Phonons

Paper TitlePage

Authors: Netram Kaurav, K.K. Choudhary
Abstract: Thermal conductivity κ (T) of LaFeAsO is theoretically investigated below the spin density wave (SDW) anomaly. The lattice contribution to the thermal conductivity (κph) is discussed within the Debye-type relaxation rate approximation in terms of the acoustic phonon frequency and relaxation time below 150 K. The theory is formulated when heat transfer is limited by the scattering of phonons from defects, grain boundaries, charge carriers, and phonons. The lattice thermal conductivity dominates in LaFeAsO and is an artifact of strong phonon-impurity and-phonon scattering mechanism. Our result indicates that the maximum contribution comes from phonon scatters and various thermal scattering mechanisms provide a reasonable explanation for maximum appeared in κ (T).
Authors: D.Lj. Mirjanić, D. Raković, J.P. Šetrajčić, S.M. Stojković, Igor Vragović, S.K. Jaćimovski
Authors: Maria Helena Braga, Maria Helena Sá, Jorge A. Ferreira, Luke L. Daemen
Abstract: Density Functional Theory (DFT) calculations were performed. They were firstly implemented to optimize the structure and refine the stoichiometry of the only ternary compound, CuLi0.08Mg1.92 of the Cu-Li-Mg system. Furthermore using DFT, several possible structures of CuMg2Hx were optimized. Since most of the hydrides are cubic structures or can be considered as distortions of a cubic structure, we have started calculations for CuMg2Hx (x = 4 - 6) with tetragonal and monoclinic structures, similar to those of the hydrides formed by the nearest neighbors of Cu and Mg in the periodic table: NiMg2H4 and CoMg2H5 (e.g. monoclinic C2/c and tetragonal P4/nmm, respectively). It can be concluded that the most stable configuration corresponds to CuMg2H5 with C2/c structure. We have performed several neutron scattering experiments that are in agreement with the first principles calculations.
Authors: Gang Chen
Abstract: Energy transport in nanostructures differs significantly from macrostructures because of classical and quantum size effects on energy carriers. Experimental results show that the thermal conductivity values of nanostructures such as superlattices are significantly lower than that of their bulk constituent materials. The reduction in thermal conductivity led to a large increase in the thermoelectric figure of merit in several superlattice systems. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices that convert waste heat into electricity. Superlattices grown by thin-film deposition techniques, however, are not suitable for large scale applications. Nanocomposites represent one approach that can lead to high thermoelectric figure merit. This paper reviews the current understanding of thermal conductivity reduction mechanisms in superlattices and presents theoretical studies on thermoelectric properties in semiconducting nanocomposites, aiming at developing high efficiency thermoelectric energy conversion materials.
Authors: Rudolf Schneider, Jochen Geerk, Alexander G. Zaitsev, Rolf Heid, K.P. Bohnen, H. von Löhneysen
Abstract: We report on the study of the interband pairing interaction in the two-band superconductor MgB2 by tunneling spectroscopy using thin film tunnel junctions. The films were deposited in situ by an approach comprising a conventional planar B sputter gun and a special homemade Mg evaporator providing a high vapor pressure. For the tunneling experiments sandwich-type crossed-strip tunnel junctions with a native MgB2 oxide as the potential barrier and Al, In or Pb counterelectrodes were prepared. Voltage-dependent differential conductance measurements revealed estimates of the barrier thickness and height of 1.5 nm and 1.6 eV, respectively, and allowed us to determine the phonon-induced structures in the tunneling density of states of the phonon-mediated superconductor MgB2. The analysis of the reduced density of states using the standard single-band Eliashberg equations yielded an effective electron-phonon spectral function accounting for the smaller energy gap. A further analysis involving ab-initio LDA calculations and the two-band Eliashberg equations revealed that the dominant feature in the effective spectral function, a strong peak at 58 meV, was mainly due to the interband pairing interaction.
Authors: V.M. Andreev, M.V. Cherotchenko, L.B. Karlina, A.M. Mintairov, V.P. Khvostikov, S.V. Sorokina
Authors: M. Chafai, J. Jiménez, Enric Martín, W.C. Mitchel, Adam W. Saxler, Ronald Perrin
Showing 1 to 10 of 29 Paper Titles