Papers by Keyword: Power Device

Paper TitlePage

Authors: Qing Chun Jon Zhang, Robert Callanan, Anant K. Agarwal, Albert A. Burk, Michael J. O'Loughlin, John W. Palmour, Charles Scozzie
Abstract: 4H-SiC Bipolar Junction Transistors (BJTs) and hybrid Darlington Transistors with 10 kV/10 A capability have been demonstrated for the first time. The SiC BJT (chip size: 0.75 cm2 with an active area of 0.336 cm2) conducts a collector current of 10 A (~ 30 A/cm2) with a forward voltage drop of 4.0 V (forced current gain βforced: 20) corresponding to a specific on-resistance of ~ 130 mΩ•cm2 at 25°C. The DC current gain, β, at a collector voltage of 15 V is measured to be 28 at a base current of 1 A. Both open emitter breakdown voltage (BVCBO) and open base breakdown voltage (BVCEO) of ~10 kV have been achieved. The 10 kV SiC Darlington transistor pair consists of a 10 A SiC BJT as the output device and a 1 A SiC BJT as the driver. The forward voltage drop of 4.5 V is measured at 10 A of collector current. The DC forced current gain at the collector voltage of 5.0 V was measured to be 440 at room temperature.
Authors: Anant K. Agarwal, Jeff B. Casady, L.B. Rowland, W.F. Valek, C.D. Brandt
Authors: Anant K. Agarwal, Sei Hyung Ryu, Ranbir Singh, Olof Kordina, John W. Palmour
Authors: Francesco La Via, Fabrizio Roccaforte, Antonino La Magna, Roberta Nipoti, Fulvio Mancarella, Peter Wellman, Danilo Crippa, Marco Mauceri, Peter Ward, Leo Miglio, Marcin Zielinski, Adolf Schöner, Ahmed Nejim, Laura Vivani, Rositza Yakimova, Mikael Syväjärvi, Gregory Grosset, Frank Torregrosa, Michael Jennings, Philip A. Mawby, Ruggero Anzalone, Salvatore Coffa, Hiroyuki Nagasawa
Abstract: The cubic polytype of SiC (3C-SiC) is the only one that can be grown on silicon substrate with the thickness required for targeted applications. Possibility to grow such layers has remained for a long period a real advantage in terms of scalability. Even the relatively narrow band-gap of 3C-SiC (2.3eV), which is often regarded as detrimental in comparison with other polytypes, can in fact be an advantage. However, the crystalline quality of 3C-SiC on silicon has to be improved in order to benefit from the intrinsic 3C-SiC properties. In this project new approaches for the reduction of defects will be used and new compliance substrates that can help to reduce the stress and the defect density at the same time will be explored. Numerical simulations will be applied to optimize growth conditions and reduce stress in the material. The structure of the final devices will be simulated using the appropriated numerical tools where new numerical model will be introduced to take into account the properties of the new material. Thanks to these simulations tools and the new material with low defect density, several devices that can work at high power and with low power consumption will be realized within the project.
Authors: Dominique Tournier, Peter Waind, Phillippe Godignon, L. Coulbeck, José Millan, Roger Bassett
Abstract: Due to the significant achievements in SiC bulk material growth and in SiC device processing technology, this semiconductor has received a great interest for power devices, particularly for SiC high-voltage Schottky barrier rectifiers. The main difference to ultra fast Si pin diodes lies in the absence of reverse recovery charge in SiC SBDs. This paper reports on 4.5kV-8A SiC Schottky diodes / Si-IGBT modules. The Schottky termination design and the fabrication process gives a manufacturing yield of 40% for large area devices on standard starting material. Modules have been successfully assembled, containing Si-IGBTs and 4.5kV-SiC Schottky diodes and characterized in both static and dynamic regimes. The forward dc characteristics of the modules show an on-resistance of 33mohm.cm2 @ room temperatue (RT) and a very low reverse leakage current density (JR < 10 5A/cm2 @ 3.5kV). An experimental breakdown voltage higher than 4.7kV has been measured in the air on polyimide passivated devices. This value corresponds to a junction termination efficiency of at least 80% according to the epitaxial properties. These SiC SBDs are well suited for high voltage, medium current, high frequency switching aerospace applications, matching perfectly as freewheeling diodes with Si IGBTs.
Authors: A.V. Suvorov, Lori A. Lipkin, G.M. Johnson, Ranbir Singh, John W. Palmour
Authors: Qing Chun Jon Zhang, Jim Richmond, Craig Capell, Anant K. Agarwal, John W. Palmour, Heather O'Brian, Charles Scozzie
Abstract: A novel power device configuration, the Bipolar Turn Off thyristor (BTO), was proposed and demonstrated in SiC. The BTO operates in anode switch configuration consisting of a 9 kV SiC p-type Gate Turn Off thyristor (GTO) and a 1600 V SiC n-type Bipolar Junction Transistor (BJT). Compared with SiC GTOs, several new features have been accomplished in the BTO: (1) A positive temperature coefficient of forward voltage drop, (2) Anode current saturation capability, and (3) A simple gate driver and fast switching speed.
Authors: Jian Hui Zhao, Larry X. Li, Kiyoshi Tone, Petre Alexandrov, M. Pan, M. Weiner
Authors: J. Neil Merrett, David C. Sheridan, John R. Williams, Chin Che Tin, J.D. Cressler
Authors: Matteo Bosi, Claudio Ferrari, Daniel Nilsson, Peter J. Ward
Abstract: In this work we have studied the carbonization of 3C-SiC on misoriented Si substrates, using different thermal ramp rates and shapes. We observed that the heating rate (°C/sec) from carbonization temperature to film growth temperature plays a major role in controlling the void density. Moreover, void formation can be eliminated by the introduction of silane at different temperatures during the heating ramp. The studies were performed on a small research reactor and the results were successfully transferred to a production scale reactor, aimed to the production of 3C-SiC power devices manufactured on 100 and 150 mm Si substrates.
Showing 1 to 10 of 77 Paper Titles