Papers by Keyword: Recombination

Paper TitlePage

Authors: Anatoly M. Strel'chuk, A.V. Mashichev, Alexander A. Lebedev, A.N. Volkova, Konstantinos Zekentes
Abstract: The forward current was investigated in 4H-SiC p+n structures grown by sublimation epitaxy. The doping level, Nd-Na, of the n-layer was about (3-4)x1016 cm-3 and the diode area was in the range from 1x10-5 to 2x10-4 cm2. The observed current can be considered as current due to bulk recombination in the space charge region of the pn junction via deep level center or due to surface recombination. The criterion which was performed in this study to differentiate such currents was the investigation of recombination current versus perimeter/area ratio dependence. It was found that no pronounced difference in the recombination current parameters for diodes with different perimeter/area ratio was observed, i.e. current due to surface recombination was not observed for the 4H-SiC pn structures investigated.
Authors: S.R. Dhariwal, B.M. Deoraj, S. Rajvanshi
Authors: Yong Chang Zhang, Xing Jian Jiao, Chen Zhou, He Ping Shen, Feng Hao, Kozue Hotozuka, Hong Lin
Abstract: Single-crystal TiO2 nanorod film was synthesized directly on FTO substrates with various lengths by changing the hydrothermal growth parameters including growth time and growth temperature. The obtained nanorod arrays were incorporated in organic solar cells as buffer layer instead of PEDOT: PSS. Results showed that devices assembled with TiO2 nanorods film of 200 nm in length exhibited a lower open-circuit voltage but a significantly higher short-circuit current density compared to those of normal FTO/PEDOT: PSS/P3HT: PCBM/Al structure with a comparable active layer thickness. Overall the power conversion efficiency was boosted by two-fold. Electrochemical impedance spectroscopy (EIS) analyses revealed that the improvement in the photovoltaic performance was induced by the inhibited recombination and consequently enhanced electron lifetime.
Authors: Bo Monemar
Showing 1 to 10 of 58 Paper Titles