Papers by Keyword: Recrystallization

Paper TitlePage

Authors: Matthias Militzer, Thomas Garcin, Warren J. Poole
Abstract: Laser ultrasonics for metallurgy (LUMet) is an innovative sensor technology for in-situ measurement of microstructure evolution during thermomechanical processing. This unique sensor has been attached to a Gleeble 3500 thermomechanical simulator for dedicated laboratory studies during processing of steel, aluminum, magnesium and titanium samples. Advanced processing software has been developed for the measurement of grain size and texture evolution from laser ultrasonic signals. Results of austenite grain growth measurements in low carbon steels will be described to demonstrate the capabilities of the LUMet technique. Further, applications of the system to measure recrystallization of ferrite and austenite formation during intercritical annealing simulations of dual phase steels will be presented. The ability to rapidly acquire data both during a single test and for multiple conditions over a range of conditions from different samples has important implications on expediting process modelling and alloy design. Although certain limitations exist, the LUMet technique offers a very reliable characterization platform with a number of potential applications in metallurgical process engineering.
Authors: Yasuhiro Yogo, Kouji Tanaka, Koukichi Nakanishi
Abstract: An in-situ observation method for structures at high temperature is developed. The new observation device can reveal grain boundaries at high temperature and enables dynamic observation of these boundaries. Grain growth while maintaining microstructure at high temperature is observed by the new observation device with only one specimen for the entire observation, and grain sizes are quantified. The quantifying process reveals two advantages particular to the use of the new observation device: (1) the ability to quantify grain sizes of specified sizes and (2) the results of average grain size for many grains have significantly less errors because the initial structure is the same for the entire observation and the quantifying process. The new observation device has the function to deform a specimen while observing structures at high temperature, so that enables it to observe dynamic recrystallization of steel. The possibility to observe recrystallization is also shown.
Authors: Petr Král, Jiří Dluhoš, Pavel Peřina, Tomáš Barták
Abstract: Experiments were conducted to determine microstructure changes occurring during thermal exposure in metals processed by equal-channel angular pressing (ECAP). The ECAP pressing was performed at room temperature by route Bc. Static annealing and constant load creep tests in tension were conducted at 0.3-0.5 Tm. The microstructure was examined by scanning electron microscope combined with focus ion beam - TESCAN LYRA 3 equipped with electron back scatter diffraction (EBSD). It was found that creep behaviour is influenced by synergetic effect of additional creep mechanisms like grain boundary sliding, more intensive diffusion processes or recrystallization.
Authors: Naoki Maruyama, George D.W. Smith
Abstract: Atomic-scale interface segregation behaviour of Nb and Mo during different stages of recrystallisation of a-Fe has been investigated using a three-dimensional atom probe (3DAP). Experimental procedures to analyse a specific region of interest in the specimens and to determine an orientation relationship between analysed contiguous grains are briefly described, and then analytical artefacts which may affect the measured solute distribution are discussed. Atom probe analysis reveals that Gibbs free energy of segregation of Nb is larger than that of Mo in a-Fe, implying that a stronger solute Nb-interface interaction can be a reason for the larger retardation effect of recrystallisation by Nb addition. The comparison of measured solute profiles at migrating recrystallisation interfaces with calculated solute profiles show that Cahn’s solute drag model gives a reasonable fit to solute profiles for migrating interfaces.
Authors: Michael Ferry, Wan Qiang Xu, M. Zakaria Quadir, Nasima Afrin Zinnia, Kevin J. Laws, Nora Mateescu, Lalu Robin, Lori Bassman, Julie M. Cairney, John F. Humphreys, Adeline Albou, Julian H. Driver
Abstract: A focused ion beam (FIB) coupled with high resolution electron backscatter diffraction (EBSD) has emerged as a useful tool for generating crystallographic information in reasonably large volumes of microstructure. In principle, data generation is reasonably straightforward whereby the FIB is used as a high precision serial sectioning device for generating consecutive milled surfaces suitable for mapping by EBSD. The successive EBSD maps generated by serial sectioning are combined using various post-processing methods to generate crystallographic volumes of the microstructure. This paper provides an overview of the use of 3D-EBSD in the study of various phenomena associated with thermomechanical processing of both crystalline and semi-crystalline alloys and includes investigations on the crystallographic nature of microbands, void formation at particles, phase redistribution during plastic forming, and nucleation of recrystallization within various regions of the deformation microstructure.
Authors: Henning Friis Poulsen, Xing Fu, Erik Knudsen, Erik M. Lauridsen, L. Margulies, S. Schmidt
Abstract: 3-Dimensional X-Ray Diffraction (3DXRD) microscopy is a tool for fast and non-destructive characterization of the individual grains, sub-grains and domains inside bulk materials. The method is based on diffraction with highly penetrating hard x-rays, enabling 3D studies of millimeter - centimeter thick specimens. The position, volume, orientation, elastic and plastic strain can be derived for hundreds of grains simultaneously. Furthermore, by applying novel reconstruction methods 3D maps of the grain boundaries can be generated. With the present 3DXRD microscope set-up at the European Synchrotron Radiation Facility, the spatial resolution is ~ 5 µm, while grains of size 100 nm can be detected. 3DXRD microscopy enables, for the first time, dynamic studies of the individual grains and sub-grains within polycrystalline materials. The methodology is reviewed with emphasis on recent advances in grain mapping. Based on this a series of general 3DXRD approaches are identified for studies of nucleation and growth phenomena such as recovery, recrystallisation and grain growth in metals.
Authors: S. Sarkar, Mary A. Wells, Warren J. Poole
Abstract: An investigation was conducted on the softening behaviour of cold rolled continuous cast (CC) AA5754 Al alloy and compared to the results for the ingot cast (IC) material. The present study suggests that the CC material exhibits greater resistance to softening as compared to the IC AA5754 for the same amount of cold deformation. The differences in the softening kinetics become more noticeable with increasing level of cold deformation and from a processing point of view can be attributed to the absence of the homogenization stage during the processing of the CC material. Resistivity measurements were carried out during the annealing treatment of the CC materials to examine the possibility of concurrent precipitation, which could potentially retard the softening kinetics for these materials. In addition, the current research reveals that the CC material produces a finer recrystallized grain size as compared to the IC material.
Authors: Abdelali Hayoune
Abstract: In contrast to isothermal aging, few reports document the non-isothermal aging of deformed Al–Mg–Si alloys. The knowledge of non-isothermal aging of pre-deformed Al–Mg–Si alloys is of primary importance to understand the thermal stability as well as to control the microstructure of the final product during industrial processing. Therefore, the present work has been focused to understand the microstructure evolution during the continuous heating of a cold rolled Al–Mg–Si alloy. This has been followed using dilatometry, Differential Scanning Calorimetry, X-Ray Diffraction and microhardness measurement. Based on the results obtained, it is shown that dilatometry is a powerful tool to study phase transformations in deformed Al-Mg-Si alloys, moreover, the microstructural evolution, of the cold rolled sample, can be described as follows: at the earlier stages of the non-isothermal aging, formation and then the reversion of fully coherent GP zones take place. This is followed by the simultaneous occurrence of β” and β’ precipitation and recovery reaction. By continuing aging, the next reactions which will take place are β” and β’ dissolution and recrystallization. Finally, one can observe the formation and then the dissolution of the equilibrium phase β.
Authors: John F. Humphreys
Authors: Rong Hua Yang
Abstract: Phenazine with high purity above 99.5% was recovered from waste of industrial production of 4-amino-diphenylamine by using solid-liquid separation, solvent extraction, recrystallization, sublimation and rectification. The operating condition for the recovery of phenazine was assessed and optimal operation conditions were recommended. The yield of phenazine in the waste reaches 85% or so, the rest of the waste returns to the system for further use. This novel method increased waste utilization value and reduced production cost compared with the conventional process. This research saves the cost in phenazine synthesis and reduces waste emission.
Showing 1 to 10 of 839 Paper Titles