Papers by Keyword: Residual Stress

Paper TitlePage

Authors: Howard J. Stone, Harshad K.D.H. Bhadeshia, Philip J. Withers
Abstract: The level of residual stresses generated in fusion welds has been a major area of interest for many years. For steels, a major influence on the final state of stress is through martensitic transformation. This is because the martensitic transformation is accompanied by significant shear and volume strains. One way to mitigate the development of residual stress is by controlling the onset of the transformation such that the associated strain is able to compensate for thermal contraction all the way down to ambient temperatures. In the past it has only been possible to follow the evolution of the phase transformation during cooling of the weld metal using indirect methods such as dilatometry and differential scanning calorimetry. This paper describes the first work in which the phases present are characterized directly during the cooling of reheated weld metal at conditions typical of those encountered during welding by installing a thermomechanical simulator on a synchrotron diffraction beam line at ESRF.
Authors: Florian Vollert, Jonny Dixneit, Jens Gibmeier, Arne Kromm, Thomas Buslaps, Thomas Kannengiesser
Abstract: Welding using low transformation temperature (LTT) filler materials is an innovative approach to mitigate detrimental welding residual stresses without cost-intensive post weld-treatments [1, 2]. Due to the local generation of compressive residual stresses in the weld line by means of a delayed martensite transformation a significant enhancement of the cold cracking resistance of highly stressed welded components can be expected. For the effective usage of these materials a deeper understanding of the microstructural evolution inside the weld material is necessary to determine the complex processes that cause the residual stress formation during welding. Solid-state phase transformation kinetics and the evolution of strain in LTT weld filler materials are monitored in-situ at the instrument ID15A@ESRF in Grenoble. The transferability to real components is implemented by using a realistic MAG welding process under consideration of structural restraint. During welding of multilayer joints, the phase transformation and phase specific strain evolution of each individual layer is investigated in transmission geometry by means of energy-dispersive X-ray diffraction EDXRD using high energy synchrotron radiation with a counting rate of 2.5 Hz. The measurement results of a 10% Cr / 10% Ni LTT weld filler are compared to data monitored for the conventional weld filler material G89. The in-situ data clearly indicate a strong effect on the local strain evolution and the formation of compressive strain. This results from the restraint volume expansion during the postponed austenite to martensite transformation of the LTT weld filler, which counteracts the thermal shrinkage. In contrast, for the conventional weld filler material the thermal contraction strains lead to tensile residual strain during welding. Furthermore, the results of in-situ observation during welding show that the transformation kinetic is dependent on the welding sequence.
Authors: Uwe Reisgen, Christoph Geffers, Rahul Sharma, Jana von der Heydt
Abstract: Temperature-induced strain with, at the same time, reduced formability is, among other things, responsible for crack development in the range of high temperatures. For a more detailed examination of these so-called hot cracks, experimental measurements of the strain during the welding process have been carried out using neutron diffraction. The measurement of strain is important since it exerts decisive influence on the development of cracks.
Authors: Arne Kromm, Thomas Kannengiesser, Jens Gibmeier
Abstract: Tensile residual stresses introduced by conventional welding processes diminish the crack resistance and the fatigue lifetime of welded components. In order to generate beneficial compressive residual stresses at the surface of a welded component, various post-weld treatment procedures are available, like shot peening, hammering, etc. These post-weld treatments are, however time and cost extensive. An attractive alternative is to generate compressive stresses over the complete weld joint in the course of the welding procedure by means of so-called Low Transformation Temperature (LTT) filler materials. The volume change induced by the transformation affects the residual stresses in the weld and its vicinity. LTT fillers exhibit a relatively low transformation temperature and a positive volume change, resulting in compressive residual stresses in the weld area. In-situ measurements of diffraction profiles during real welding experiments using Gas Tungsten Arc (GTA)-welding process were realized successfully for the first time. Transformation temperatures during heating and subsequent cooling of LTT welding material could be assessed by means of energy dispersive diffraction using high energy synchrotron radiation. The results show that the temperature of martensite start (Ms) is strongly dependent on the content of alloying elements. In addition the results indicate that different phase transformation temperatures are present depending on the welding depth. Additional determination of residual stresses allowed it to pull together time and temperature resolved phase transformations and the resulting phase specific residual stresses. It was shown, that for the evaluation of the residual stress state of LTT welds the coexisting martensitic and austenitic phases have to be taken into account when describing the global stress condition of the respective material in detail.
Authors: Matthias Reihle, Michael Hofmann, Uwe Wasmuth, Wolfram Volk, Hartmut Hoffmann, Winfried Petry
Abstract: Composite castings exhibit high residual stresses, mainly because of different thermal expansion of the used materials. Similar to the in-cast cylinder liners in a motor block, a composite specimen, consisting of a steel insert and an aluminum cast surrounding, was analyzed by neutron diffraction. The temperature- and time-dependent change of lattice spacing and thus the strain evolution was investigated by in-situ experiments directly after casting and during the cooling of the part. Different cooling conditions were investigated using two different molds, namely a sand and a permanent (steel) mold, optimized for in-situ neutron diffraction.
Authors: Guillaume Geandier, Moukrane Dehmas, Mickael Mourot, Elisabeth Aeby-Gautier, Sabine Denis, Olivier Martin, Nikhil Karnatak
Abstract: In situ high energy X-ray diffraction synchrotron was used to provide direct analysis of the transformation sequences in steel-based matrix composite (MMC) reinforced with TiC particles. Evolution of the phase fractions of the matrix and TiC particles as well as the mean cell parameters of each phase were determined by Rietveld refinement from high energy X-ray diffraction (ID15B, ESRF, Grenoble, France). In addition, some peaks were further analysed in order to obtain the X-ray strain during the cooling step. Non-linear strain evolutions of each phase are evidenced, which are either associated with differences in the coefficient of thermal expansion (CTE) between matrix and TiC particle or to the occurrence of phase transformation. Micromechanical calculations were performed through the finite element method to estimate the stress state in each phase and outline the effects of differences in CTE and of volume change associated with the matrix phase transformation. The calculated results led to a final compressive hydrostatic stress in the TiC reinforcement and tensile hydrostatic stress in the matrix area around the TiC particles. Besides, the tendencies measured from in situ synchrotron diffraction (mean cell parameters) matched with the numerical estimates.
Authors: J. Sheng, U. Welzel, Eric J. Mittemeijer
Abstract: The stress evolution during diffusion annealing of Ni-Cu bilayers (individual layer thicknesses of 50 nm) was investigated employing ex-situ and in-situ X-ray diffraction measurements. Annealing at relatively low homologous temperatures (about 0.3 - 0.4 Tm) for durations up to about 100 hours results in considerable diffusional intermixing, as demonstrated by Auger-electron spectroscopy investigations (in combination with sputter-depth profiling). In addition to thermal stresses due to differences of the coefficients of thermal expansion of layers and substrate, tensile stress con-tributions in the sublayers arise during the diffusion anneals. The obtained stress data have been discussed in terms of possible mechanisms of stress generation. The influence of diffusion on stress development in the sublayers of the diffusion couple during heating and isothermal annealing was investigated by comparing stress changes in the bilayer system with corresponding results obtained under identical conditions for single layers of the components in the bilayer system. The specific residual stresses that emerge due to diffusion between the (sub)layers in the bilayer could thereby be identified.
Authors: Wolfgang Kowalski, Markus Dammer, Frank Bakczewitz, Olaf Kessler
Abstract: Stents are medical implants, which are applied to keep cavities in the human body open, e.g. blood vessels. Typically they consist of tube-like grids of suitable metal alloys. Typical dimensions depend on their applications: outer diameters in the mm-range and grid bar thickness in the 100 µm range. Before implantation, stents are compressed (crimped) to allow implantation in the human body. During implantation, stents are expanded, usually by balloon catheters. Crimping as well as expansion causes high strains and high stresses locally in the grid bars. These strains and stresses are important design criteria of stents. Usually, they are calculated numerically by Finite Element Analysis (FEA) [1,2]. The XRD-sin²ψ-technique is applied for in-situ-determination of stress conditions during crimping and expansion of stents of the CoCr-alloy L-605. This provides a realistic characterization of the near-surface stress state and an evaluation of the numerical FEA results. XRD-results show an increasing compressive load stress in circumferential direction with increasing stent expansion. These findings correlate with the numerical FEA results. Further residual stresses after removing the expansion device have been measured.
Authors: Kamil Kolařík, Karel Trojan, Jiří Čapek, Jiří Sís, Ondřej Řídký, Lukáš Zuzánek, Nikolaj Ganev
Abstract: Residual stresses (RS) and welding process represent a traditional partnership between an ever evolving, and vital, technological process and a quantity characterizing the result of this process. As the modern way of joining materials is shifting gradually from conventional welding into friction stir or laser welding, RS remain a crucial parameter which gives clues about the welds’ behavior under dynamic loads. In this contribution the joint created by laser welding with filler wire is described by 2D maps of RS and hardness.
Authors: Byung Nam Kim, Masanori Watanabe, Manabu Enoki, T. Kishi
Showing 1 to 10 of 1931 Paper Titles