Papers by Keyword: Shaking Table Test

Paper TitlePage

Authors: Yan Ru Wang, Mao Yu Zhang, Jun Wu Dai, Mai Tong, George C. Lee
Abstract: In this paper, we present the analysis on 3D temporal characteristics of a scale model for high-rise structure. Based on the parameter of instantaneous tangential acceleration aT, normal acceleration aN, Euclidean norm of acceleration vector |a|, Euclidean norm of velocity vector |v|, temporal curvature κ, κt, Some interesting relationships and information in depth between them would be obtain.
Authors: Shao Feng Chai, Ping Wang, Zhi Jian Wu, Jun Wang, Gao Feng Che
Abstract: Shaking table test is an important means of simulated earthquake in laboratory, slope shaking table test data provide a scientific basis for analysis of dynamic stability and instability mechanism of slopes. Sine vibration table test data processing is different from general frequency domain analysis method, need real-time data processing in time domain. Taking the sine sweep test conditions, which is one of the conditions in "Earthquake landslide and slope prevention and control technology research on shaking table test", as an example. Describes the layout of sensors in shaking table test and the reasons; Sine sweep test load and aim; and listed the steps and methods of the sine sweep test in data processing; Through the processing and analysis of test data identified the vibration frequency of model and shaking table system is 30Hz, damping ratio is 2.06%; Analysis and calculation of the different sections of the slope and position of the amplification coefficient. A methodological guidance for shaking table test and dynamic response analysis of the slope is provided.
Authors: Hai Biao Wang, Xun Guo, Bao Kuan Li, Hai Xu Yang
Abstract: This paper focuses on the analysis of dynamic characteristics of structural systems, maximum response of acceleration and maximum inter-story displacement angle etc. so as to study the seismic performance, yielding mechanism and seismic resistance capacity of the structure under the circumstance of constructional measures of seismic intensity VII through an earthquake shake table test on a model of a six-story reinforced masonry structure with small-sized concrete hollow blocks. In view of the whole test process, the integral deformation of the reinforced masonry structural model under the influence of seismic vibration is predominantly bending deformation. While inputting different earthquake intensity, the transverse peak average of maximum input acceleration that can be sustained by the structure is lower than that of the vertical peak average. Meanwhile, transverse deformation is more severe than vertical deformation, indicating that vertical seismic resistance capacity is stronger than transverse seismic capacity. The test result shows that the effect of the constraint system consisted of ring beam, constructional column as well as horizontal tie reinforcement is quite obvious, the structure possesses comparatively strong resistance of failure under the influence of moderate and strong earthquakes, which can completely meet the requirement specified in the Seismic Codes, that is, standing erectly when it is subjected to great earthquakes in the area of seismic intensity VII. When the structure is subjected to rare earthquakes, it also possesses considerable seismic resistance capacity.
Authors: Rong Rong Hu, Yu Jiang Dong, Xing Hu Zhang
Abstract: Traditional Rammed earth houses are still widespread in rural areas of western China. However, the seismic damage of earth houses is usually serious due to its poor seismic resistance and little research has been conducted on dynamic tests of rammed earth structure. A simple and low-cost method to reinforce the rammed earth wall is put forward in the paper. The shake table testing for both the wall panels with and without reinforcements has been carried out. The test results are analyzed from the aspects of damage phenomenon, dynamic behavior, and acceleration and displacement responses of both specimens. The results show the effectiveness of the reinforcement method on improving the seismic capacity of the rammed earth wall.
Authors: Kao Shan Dai, Xiao Song Ren, Qing Jun Chen, Bin Zhao
Abstract: The laser Doppler vibrometer is a non-contact sensing technique developed based on the Doppler effect of a laser beam emerging from a subject surface. As a vibration transducer, the laser Doppler vibrometer offers many advantages over the conventional contact vibration sensors. It allows remote, non-intrusive measurement of structural vibration and it is very useful in scenarios when traditional contacting measurement is inconvenient. In this paper, four laser-based structural dynamic studies were presented and some results were briefly reported, which include laboratory dynamic testing of a bolted steel beam, a scaled-down high-rise building model, and a prestressed concrete reaction wall, and field vibration measurement of a viaduct bridge. Through these demonstrating cases, it is anticipated to help civil engineers get familiar with the laser-based sensing technology and to extend their selections for effective measurement approaches during experimental research.
Authors: Jie Dong Zhan, Xin Tong Li, Yang Li
Abstract: Abstract: The thesis is aimed to study the characteristics nonlinear seismic response of the isolated continuous girder bridges with LRB. Inorder to achieve the aim, force- deformation properties of the LRB is considered as bilinear first, the bouc-wen model is adopted to imitate the force nonlinear deformation behavior of LRB, and by using Finite element method, the motion equation of the Isolation system of continuous girder bridge is established, then some shaking table tests towards the model of isolated continuous girder bridges with LRB is done. On this basis of it, by comparing the experimental results and calculation results, such as the acceleration and displacement of deck, vertical force of bearing, and the relationship between the Isolation layer displacement and the Level force displacement of the Bearing, we can see that the difference between the analytical results and the experimental results are very small. The results show that the calculation method can analyze Nonlinear Seismic Response of isolated continuous girder bridges with LRB efficiently. But when the vertical earthquake component is larger ,whether the results of the Vertical tension are produced or not, designing the Rubber bearings should be considered.
Authors: Pei Zhen Li, Jing Meng, Peng Zhao, Xi Lin Lu
Abstract: Shaking table test on soil-structure interaction system in harder site condition is presented briefly in this paper. Three-dimensional finite element analysis on shaking table test is carried out using ANSYS program. The surface-to-surface contact element is taken into consideration for the nonlinearity of the state of the interface of the soil-pile and an equivalent linear model is used for soil behavior. By comparing the results of the finite element analysis with the data from shaking table tests, the computational model is validated. Based on the calculation results, the paper gives the seismic responses under the consideration of soil-structure interaction in harder site condition, including acceleration response, contact analysis on soil pile interface and so on.
Authors: Yen Po Wang, Ming Lian Chang, Jia Ge Chang
Abstract: In this study, a scheme integrated with deterministic stochastic subspace system identification and the method of damage localization vector (DLV) is proposed for damage detection of structures based on seismic response data. A series of shaking table tests has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom ends. Both single and multiple damage conditions at various locations have been considered. Full or partial observation conditions have been taken into account in the system identification analysis. It has been shown that local damages (stories) can be identified from global responses of the structure to earthquakes if sufficiently observed.
Authors: Hirokazu Iemura, Akihiro Toyooka, Masaki Higuchi, Osamu Kouchiyama
Abstract: In the first part of this study, theoretical and numerical evaluation of negative stiffness appearing in the skyhook control is conducted. The skyhook control is widely known for the vibration control method in the mechanical engineering field. The skyhook control can also achieve absolute response reduction. In order to realize a negative stiffness, however, the control force that accelerates the deformation should be generated. At present, such a performance is achieved only by using loading actuators or semi-active devices with sophisticated controllers and sensors. In the second part of this research, a new damper realizing a negative stiffness and stable energy dissipation in a passive manner is proposed, and its dynamic performance is investigated through large-scale shaking table tests. It is confirmed that the innovative negative stiffness passive damper reduces both the absolute acceleration and the relative displacement of a bridge model.
Authors: Sara Casciati, Zhi Cong Chen
Abstract: The authors have access to an existing laboratory facility which has been used to validate different control schemes. The three-storey steel frame is mounted on a single-axis shaking table simulating the ground excitation. Four single-axis wired accelerometers were mounted on each level (ground and floors of the frame). A mass cart driven by a DC motor, a DC motor position analog controller, and a controller board complete the early bed-test realization. Recently wireless sensor links and a digital position controller were introduced to update the AMD performance. In this paper the frame specimen is simulated by a numerical model allowing the authors to design and test the control laws without any risk of damaging the physical model.
Showing 1 to 10 of 97 Paper Titles