Papers by Keyword: Structural Crashworthiness

Paper TitlePage

Authors: Amir Radzi Ab Ghani, Ramlan Kasiran, Mohd Shahriman Adenan, Mohd Haniff Mat, Rizal Effendy Mohd Nasir, Mohd Faizal Mohamad, Wan Ahmad Najmi Wan Mohamed
Abstract: Thin-walled metallic tubular structures are generally used as impact energy absorber in automotive structures due to their ease of fabrication and installation, high energy absorption capacity and long stroke. However, unlike a normal passenger car where the impact energy can be distributed throughout the whole structure, the impact energy absorbing system of an Eco-Challenge car is confined within a limited space on the front bulkhead. The challenge is to develop an impact attenuator system that can effectively absorb the impact energy within the given space and fulfil the specified rate of deceleration. This new design utilized the standard Aluminium 6063 circular tubes, cut and welded into specific configurations i.e. stacked toroidal tubes with central axial tube sandwiched between two flat plates. Two configurations were investigated; circular and square toroids. Explicit non-linear FEA software was used to determine the impact response i.e. energy absorption, impact force and rate of deceleration. Both configurations showed promising results but the configuration that can be readily fabricated was chosen as the final design.
237
Authors: Ign Wiratmaja Puja, T. Hardono, Khalid, M.F. Adziman
Abstract: The Indonesian railway transportation has adventages in term of capacity, efficiency, trafic, and safety compared to the other types of land transportations. At present, the Indonesian Railway Company has 519 locomotives, and 1643 passenger cars, that transport about 184 million man-trip each year[1,2]. Unfortunately, the rate of train collisions in Indonesian railway system was very high. In the last ten years, 2352 train accidents have happened which claimed 997 lives and left 2638 people injured. The record shows that 110 of those accidents were train to train collisions[1]. This paper consider the structural impact behavior of Indonesian passenger railway car subject to collision forces. This characteristic is very important parameter for passenger protection during the course of collision[3-5]. The vehicle structure should be able to absorb the huge impact energy or impact force to ensure the passenger safety[6-9]. The impact energy of cars-train is evaluated using the principle of multibody dynamics[10,11]. The vehicle structure under impact load is analyzed using the finite element method. The principal of symmetry is adopted, so the collision scene could be simulated as collision between the vehicle with a rigid wall. The analysis result shows that the structure is collapse at the passenger area (saloon) which is in agreement with the real collision. Modification is proposed to protect the passenger area by introducing crush zone area and impact energy absorber.
337
Showing 1 to 2 of 2 Paper Titles