Papers by Keyword: Tetragonal Zirconia

Paper TitlePage

Authors: Yoshio Sakka, Tohru Suzuki, Koji Morita, Keijiro Hiraga
Authors: Sergio Luiz Mineiro, Maria do Carmo de Andrade Nono, Carlos Kuranaga, Dailton de Freitas
Authors: Pedro Durán, Miguel Villegas, F. Capel, J.F. Fernández, C. Moure
Authors: Keijiro Hiraga, Hidehiro Yoshida, Koji Morita, Byung Nam Kim
Abstract: In tetragonal zirconia, possibility is investigated of densification with finer grain sizes under the combination of doping and sintering in air. The materials used are CIP'ed compacts of 3-mol%-yttria-stabilized tetragonal zirconia (3Y-TZP) doped with a small amount of cations. For a given sintering temperature and initial density of the compacts, while the doped cations enhances densification in the latest stage of sintering, the effect is different in grain growth during densification: a doped cation tended to enhance grain growth, whereas the other cations tended to suppress grain growth. As a result, the doping of the latter cations brings about a grain size finer than that of the undoped 3Y-TZP for a given relative density.
Authors: Koji Morita, Keijiro Hiraga, Byung Nam Kim, Yoshio Sakka
Authors: Oleg Vasylkiv, Yoshio Sakka, Valeriy Skorokhod
Authors: Jian Jun Yin, Tao Wang, Wei Jing Xing
Abstract: Using zirconium oxychloride hydrate ( ZrOCl2•8H2O) and ammonia water (NH3•H2O) as raw materials, and ammonium dihydrogen phosphate (NH4H2PO4) as additives, tetragonal zirconia (t-ZrO2) with size range of 8–12 nm were prepared by coprecipitation method under hydrothermal conditions. The influence factors on phase transformation and the particle size such as phosphor loading, hydrothermal temperature and calcination temperature were studied by X-ray diffraction (XRD), Fourier transform Roman spectra (FT-Roman), the Brunauer-Emmett-Teller (BET) method and X-ray photoelectron spectroscopy (XPS) techniques etc. Research results show that a small amount of phosphor has been incorporated into the framework of ZrO2 crystals, producing a certain amount of oxygen vacancies. Phosphor can effectively restrain crystal particles growth and improve the thermal stability of metastable t-ZrO2. The phosphor doped t-ZrO2 had a high surface area (244.2 m2/g). In contrast to the pure ZrO2 particles readily aggregating, the phosphor species deposited on the framework of ZrO2 crystals prevented the agglomeration of the primary particles during calcinations.
Authors: Hasan Gocmez, Hirotaka Fujimori
Abstract: The citrate gel method, similar to the polymerized complex method, was used to synthesize homogenous tetragonal zirconia at 800oC and 1000oC. Nanocrystalline tetragonal single phase has been fully stabilized with 3, 7, 10 mol% CaO and 10, 15 mol% MgO at 800oC, respectively. In addition, the XRD analysis showed the absence of monoclinic phase after addition of 7 and 10 mol% CaO into zirconia-based solid solutions, which have been fully stabilized both 800oC and 1000oC. The crystallite sizes of the t-ZrO2 with 3, 7 and 10 mol% CaO at 1000oC were 32, 28 and 29nm, respectively. For ZrO2- x mol% MgO (x=3, 10, 15) solid solution, the crystallite sizes of samples at 800oC were less than 29nm, however it was increased up to 69nm at 1000oC. The prepared gel and subsequent heat-treated powders were characterized by X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM) to get detail information regarding to differentiation of polymorphs of zirconia as well as formation of powders.
Showing 1 to 10 of 24 Paper Titles