Papers by Keyword: Thermal Barrier Coating (TBC)

Paper TitlePage

Authors: Julien Sniezewski, Yannick Le Maoult, Philippe Lours
Abstract: Based on a coupled numerical and experimental approach, the design and implementation of an in situ thermal-gradient-controlled cyclic oxidation test, dedicated to the investigation of the TGO and TBC spallation, is presented. The influence of the specimen through thickness thermal gradient as well as the benefits of the video real-time monitoring of the cooling phase of an oxidation test is discussed in the case of the spallation of an alumina scale grown on FeCrAl alloys.
Authors: Noriyuki Mifune, Yoshio Harada
Abstract: The applicability of 2CaO·SiO2-CaO·ZrO2 ceramic coatings as thermal barrier coatings (TBCs) was investigated. Coatings consisting of various ratios of 2CaO·SiO2-CaO·ZrO2 bond-coated with NiCrAlY were prepared using the plasma spray process. The structure of the coatings was characterized by scanning electron microscopy and X-ray diffraction analysis. The resistance of the coatings to thermal shock was evaluated with acoustic emission techniques under a thermal cycle from 1273 K to room temperature, and the hot corrosion resistance of the coatings was investigated with V2O5 and Na2SO4 at 1273 K for 3 h. The 2CaO·SiO2-10~30mass%CaO·ZrO2 coatings had excellent thermal shock resistance, because the coatings contained a vertical micro-crack in a single flattened ceramic particle. These coatings possessed excellent corrosion protection preventing direct contact between the corrosive ashes and a NiCrAlY bond coating. The CaO in the coating reacted with vanadium compounds and inhibited the penetration of corrosive ashes to the bond coating. The developed 2CaO·SiO2-20mass%CaO·ZrO2 thermal barrier coating on stationary vanes was evaluated in an actual gas turbine. The ceramic coating did not separate from the bond coating and reacted with SOx in combustion gas to produce a stable sulfate (CaSO4), which fixed in the coating. The TBC effectively protected the metal substrate of the vanes in practical operating condition for 25,000 h.
Authors: He Fei Li, Zhao Hui Zhou, Hesnawi A, Kuo Jiang, Sheng Kai Gong
Abstract: Thermal barrier coatings with one-layered/ two-layered NiAl bond coat were produced by electron beam physical vapor deposition (EB-PVD). Compared to the TBC with one-layered bond coat, the TBC with two-layered bond coat improved the thermal cycling resistance significantly. The failure mechanism of the two-layer NiAl bond coat TBC was investigated in this paper.
Authors: Richard Wellman, John R. Nicholls
Authors: Qiang Xu, Wei Pan, Chun Lei Wan, Long Hao Qi, He Zhuo Miao
Abstract: Sm1.9Ca0.1Zr2O6.95 ceramic was sintered at 1600°C for 10 h in air by solid-state reaction method. The phase structure and thermal expansion coefficient were measured by XRD and a high-temperature dilatometry, respectively. The results show that the crystal structure of Sm1.9Ca0.1Zr2O6.95 ceramic is still pyrochlore. The doping with calcium cation leads to a shift of the X-ray spectrum of Sm1.9Ca0.1Zr2O6.95 ceramic to lower 2θ values. The experiments also show that the thermal expansion coefficients of Sm1.9Ca0.1Zr2O6.95 ceramic are higher than those of Sm2Zr2O7 ceramic. These results are related to the vacancy induced by doped calcium cation in the samarium lattice.
Authors: Daniel Renusch, Michael Schütze
Abstract: The modeling equations used for spallation prediction are becoming increasingly more sophisticated due to the consideration of a wider range of thermal and thermo-mechanical loading conditions. Consequently, a software application would make such life time models more practical and may become a desired tool that both academic and applied researchers may want to use. As a starting point for further development a prototype software has been developed based on a simple phenomenological spallation analysis model. This software features a Windows based graphical user interface and works with other Windows applications, such as, Power Point, Excel or Origin. The software analyzes laboratory spallation life time data acquired from isothermal, thermal cyclic and/or burner rig testing and provides confidence limits and accuracy assessment of the analysis model. It further calculates the life time for a given bond coat temperature, temperature gradient across the coating, and thermal cycle frequency.
Authors: Hiroyuki Waki, Akira Kobayashi
Abstract: Thermal barrier coatings (TBCs) have been employed for the insulation of substrates from high temperature in gas turbine plants. The TBC system consists of ceramic top coating, metallic bond coating and substrate. Delamination of the ceramic coating is important problem in TBC systems. In this paper, the delamination mechanism was studied by residual stress history under thermal aging and thermal cycle conditions. In-plane residual stress histories of ceramic coating and bond coating after thermal aging and cycling were measured by X-ray diffraction method. The residual stress under thermal cycling was also calculated by FEM analysis. The results obtained were as follows: (1) in-plane surface residual stresses of the coatings scarcely changed regardless of the increase of thermally grown oxidation (TGO). (2) high compressive thermal stress, residual stress at room temperature, in ceramic coating induced by thermal stress did not occur. It was found that stress of ceramic top coating was relaxed by micro cracks and driving stress of delamination was in-plane high compressive stress.
Authors: Yong Seok Kim, Dong Keun Lee, Jeong Min Lee, Hyun Woo Song, Sung Hyuk Kim, Jae Mean Koo, Chang Sung Seok, Myoung Rae Cho
Abstract: Thermal barrier coating. Thermal fatigue. Exposure time. Thermal fatigue test is one of the most widely used method to evaluate the durability of thermal barrier coating (TBC). However, thermal fatigue test can be concluded in totally different results according to the test variations. Especially, Exposure time of thermal fatigue test can affect the delamination life cycle of TBC. In this study, using the same test equipment which Kim et al. used, thermal fatigue tests were performed with different holding time at high temperature, and the test results by Kim et al. and those by this study were compared. In addition, delamination map was come to perfection from the test results to define more accurate thermal fatigue life.
Authors: Hao Ju Hu, Jian Yu Zhang, Bin Jun Fei
Abstract: A finite element simulation of a plasma sprayed thermal barrier coating(TBC) system was conducted. Plasma sprayed thermal barrier ceramic coating was treated as either a simple elastic model or an advanced viscoplastic model which includes rate dependence and unequal flow stresses in tension and compression. Predicted tensile stresses emerging in the ceramic plane at the elevated temperature never become large enough to cause surface cracks based on elastic analysis, so does using the viscoplastic model. At the low temperature, these two models identically show that the ceramic coat will locally cracks at the “peak” location. It is shown that although there are some numerical differences in these two models’ predictions, elastic analysis predicts accurate in failure mechanism analysis based on stresses
Authors: Lisa Pin, Florence Ansart, Justine Fenech, Philippe Lours, Jean Pierre Bonino, Julien Sniezewski, Yannick Le Maoult
Abstract: This paper deals with the development of a new synthesis technique for functional materials such as Yttria Stabilized Zirconia (YSZ) in the field of thermal barrier coatings. Currently, Thermal Barrier Coatings (TBCs) are manufactured by dry route technologies (EB-PVD or plasma spray) but such methods are directional and often require costly investments and complex operations. For these applications, the sol-gel route, a non directional method, is developed, to process, by suitable chemical modifications, nanocrystalline materials with a controlled morphology. The main advantage of this method is to decrease the crystallization temperature, much lower than the conventional processes, allowing the synthesis of reactive substituted zirconia powders with nanometric particles size. In this study, several suitable architectures for thermal barrier coatings have been achieved in order to show that this process is appropriate for repairing damaged TBC compared to conventional processes. The next step is to investigate spallation mechanisms and overall TBC durability by cyclic oxidation. Preliminary results are promising and research will be develop further to optimize both processing and cyclic oxidation behavior.
Showing 1 to 10 of 294 Paper Titles