Papers by Keyword: TiNi

Paper TitlePage

Authors: Satoshi Takaoka, Hiroshi Horikawa, Jyunji Kobayashi, Kenichi Shimizu
Authors: Hiromasa Semba, Nagatoshi Okabe, Toru Yamaji, Keisuke Okita, Kiyoshi Yamauchi
Abstract: The bellows formed of TiNi shape memory alloy (SMA) is proposed as a new type of seismic protection device. The bellows structure is known to have lower rigidity along the axial direction through effect of its shape. TiNi is known to be one of the most typical SMAs, which have high damping characteristics for dynamics engaged in its twin formation under martensite state and have the ability to recover completely from the large strain after unloaded and or heated. In this study, fundamental compressive behavior of TiNi bellows was investigated and discussed. Several shapes of TiNi single-stage bellows produced by rubber bulge method were prepared. They were heat-treated for some heat treatments and then examined on compression tests. Based on the results, the relationships among the bellows shapes and the stiffness, energy-absorbing capacity and so on were clarified. Finally, it was found from these results that single-stage bellows of TiNi SMA could be used as one of seismic protection devices.
Authors: A. Ishida, M. Sato, W. Yoshikawa, O. Tabata
Authors: Junya Sakurai, Ya Xu, Masahiko Demura, Toshiyuki Hirano, Ryuji Tamura
Abstract: The catalytic properties of the cold-rolled foils of intermetallic compound TiNi were studied for hydrogen production from methanol in a temperature range of 513-793 K. The catalytic activity for methanol decomposition increased with a reaction temperature, especially above 673 K. The SEM and EDS analyses revealed the formation of numerous Ni-enriched particles dispersed in the layer of carbon fibers during the reaction. The catalytic activity of TiNi foils is attributed to those Ni-enriched particles.
Authors: Cheong Cheon Lee, Akira Shimamoto, Fumio Nogata
Authors: Kazuhiro Kitamura, Yutaka Sawada, Toshio Kuchida, Tadashi Inaba, Masataka Tokuda, Yukiharu Yoshimi
Abstract: The heat treatment effect of a cast shape memory alloy (SMA) from self-propagating high temperature synthesis (SHS) ingot was investigated. The composition of SHS ingot was Ti-50.8at%Ni. DSC and Tensile test specimens were cast by lost-wax process from SHS ingot. The heat treatment conditions were 400°C-60min., 500°C-60min. and 600°C-60min. for DSC and 400°C-60min. and 500°C-60min. for tensile test. Transformation temperatures were measured by differential scanning calorimetry (DSC). Mechanical properties were measured by a tensile test at several temperatures. The effects of heat treatment temperatures were same as a general TiNi wire material.
Authors: I. Yoshida, Kazuhiro Otsuka
Abstract: Low frequency internal friction of Ti49Ni51 binary and Ti50Ni40Cu10 ternary shape memory alloys has been measured. The effect of solution and aging heat treatments on the damping property was examined. The temperature spectrum of internal friction for TiNi binary alloy consists, in general, of two peaks; one is a transition peak which is associated with the parent-martensite transformation and is rather unstable in a sense that it strongly depends on the frequency and decreases considerably when held at a constant temperature. The other one is a very high peak of the order of 10-2, which appears at around 200K. It appears both on cooling and on heating with no temperature hysteresis, and is very stable. The behavior of the peak is strongly influenced by the heat treatments. The trial of two-stage aging with a purpose of improving the damping capacity has been proved unsatisfactory. TiNiCu has a very high damping, the highest internal friction reaching 0.2, but by quenching from very high temperature, say 1373K, the damping is remarkably lowered. For the realization of high damping the quenching from a certain temperature range around 1173K seems the most preferable condition.
Showing 1 to 10 of 37 Paper Titles