Papers by Keyword: Tool Material

Paper TitlePage

Authors: Hu Ping An, Zhi Yuan Rui, Rui Feng Wang, Jun Feng Guo
Abstract: Aiming at the key problem of tool choice presented at high speed machining, this paper analyses the characteristic of existing materials of high speed machining tool from three aspects of mechanics, physics and chemistry, and sums up the cutting property of work materials combining with some experimental results and literatures. By integrated comparison of the property of materials of tool and workpiece, a method of choosing tool material for corresponding to workpiece is offered. Finally, some matched materials of tool and work are provided for convenient choice, which can acquire better effects than used testing or experience ways and means.
745
Authors: Mirołsaw Bonek, Leszek Adam Dobrzański
Abstract: The purpose of this research paper is focused on the X40CrMoV5-1 hot work tool steel surface layers improvement properties using high power diode laser. In the effect of laser alloying with powders of carbides occurs size reduction of microstructure, as well as dispersion hardening through fused in but partially dissolved carbides and consolidation through enrichment of surface layer in alloying additions coming from dissolving carbides. Introduced particles of carbides and in part remain undissolved, creating conglomerates being a result of fusion of undissolved powder grains into molten metal base. In effect of convection movements of material in the liquid state, conglomerates of carbides arrange themselves in the characteristic of swirl. Laser alloying of surface layer of investigated steel without introducing alloying additions into liquid molten metal pool, in the whole range of used laser power, causes size reduction of dendritic microstructure with the direction of crystallization consistent with the direction of heat carrying away from the zone of impact of laser beam. Remelting of the steel without introducing into liquid molten pool the alloying additions in the form of carbide powders, causes slight increase of properties of surface layer of investigated steel in comparison to its analogical properties obtained through conventional heat treatment, depending on the laser beam power implemented for remelting. The outcome of the research is an investigation showing the structural mechanisms accompanying laser alloying.
1848
Authors: Grzegorz Matula, Mirołsaw Bonek, Leszek Adam Dobrzański
Abstract: The goal of the work is fabrication coatings with the pressureless forming method or laser treatment retaining the relatively high ductility of the coated tool's core. The paper presents selection of the binder portion and type, and also of the metallic and carbides powders (WC) being the constituents of the polymer-powder slurry which was applied onto the prepared surfaces of the test pieces from the conventional HS6-5-2 high speed steel. This materials was compared with the same conventional HS6-5-2 high speed steel heat-treatable steel after laser treatment conditions and alloying additions contained in WC. Investigation indicate the influence of the alloying carbides on the structure and properties of the surface layer of investigated steel depending on manufacturing conditions and power implemented laser (HPDL). In the effect of laser alloying with powders of carbides occurs size reduction of microstructure as well as dispersion hardening through fused in but partially dissolved carbides and consolidation through enrichment of surface layer in alloying additions coming from dissolving carbides. The resistivity to thermal fatique of laser remelted steel is higher than steel after heat treatment. It shows the possibility of applying the worked out technology to manufacturing or regeneration of chosen hot working tools.
1830
Authors: N.P. Hung, V.C. Venkatesh, N.L. Loh
289
Authors: Fa Zhan Yang, Jian Qiang Zhou, Guang Yao Meng, Jun Zhao, Chang He Li
Abstract: Nanocomposite tool materials are very important in engineering field for their advantage in mechanical properties and have a good foreground in the coming years. However, there are lots of puzzles in the materials design theory. So in this paper, a new nanocomposite tool materials design method is proposed based on the interface debonding theory. The wild phase content can be fixed by calculating the debonding interface rate and the strength requirement of the tool materials. Therefore, an experiment is carried out to fabricate WC based nanocomposite tool materials under the guider of the interface debonding theory. Results show that the experimental data is in accordance well with the calculation and the model is proved to be correct.
1758
Authors: Yong Xiang Li, Dong Xia Wang, Wen Bin Wu
Abstract: High-speed cutting (HSC) is a practical technique of advanced manufacturing technology, leading the development of cutting and machining. This paper discusses the mechanism of HSC and the worldwide status quo, application and prospects of HSC.
583
Authors: Zhan Qiang Liu, Xiu Guang Peng, J.G. Liu
Abstract: Tool materials play one of the pivotal roles in the machining system. Tool materials must be carefully chosen in relation to the workpiece material to be machined, the tool life, the metal removal rate, the machining cost, and the required accuracy and finish. The advantages and decision-making processes of case-based reasoning (CBR) are described. The CBR system for tool material selection in high speed machining (HSM) is developed. The case expression and organization, searching, matching and constraint-based adaptation rules are presented. With combining the case-based reasoning strategy and constraint-based adaptation, the tool material can be properly selected on the basis of previously successful tool materials used in HSM operations, which is helpful to push the wide applications of HSM.
82
Authors: Mirosław Bonek, Grzegorz Matula, Leszek Adam Dobrzański
Abstract: The purpose of this research paper is focused on the high speed steel surface layers improvement properties using HPDL laser. The paper present laser surface technologies, investigation of structure and properties of the high speed steel alloying with carbides using high power diode laser HPDL. Investigation indicate the influence of the alloying carbides on the structure and properties of the surface layer of investigated steel depending on the kind of alloying carbides and power implemented laser (HPDL). In the effect of laser alloying with powder of carbides occurs size reduction of microstructure as well as dispersion hardening through fused in but partially dissolved carbides and consolidation through enrichment of surface layer in alloying additions coming from dissolving carbides. Introduced particles of carbides and in part remain undissolved, creating conglomerates being a result of fusion of undissolved powder grains into molten metal base. The structural mechanism was determined of surface layers development, effect was studied of alloying parameters, gas protection method, and thickness of paste layer applied onto the steel surface on structure refinement and influence of these factors on the mechanical properties of surface layer, and especially on its hardness, abrasive wear resistance, and roughness. It has the important cognitive significance and gives grounds to the practical employment of these technologies for forming the surfaces of new tools and regeneration of the used ones.
1365
Authors: Mei Lin Gu, Jian Hua Zhang, Zhi Wei
Abstract: TiB2/TiN composites with various content of Ni and Mo as sintering aid were hot-pressed at 1530°C. Effect of the content of sintering aid on microstructure and mechanical properties is investigated. Experimental results show that the fracture toughness of the composites increases consistently with an increase in the sintering aid content, however, the flexural strength gets to the maximum when the content of sintering aid is 10vol%. A new eutectic phase of MoNi can be found in the composites by X-ray diffraction (XRD) when the amount of sintering aid is over 7vol%. Scan electron microscope (SEM) analysis shows that the density of the composites increases consistently with the increasing of the sintering aid. But the abnormal-growth grains can be found and deteriorates the flexural strength in the composite No.4 because of the excessive sintering aid.
1933
Authors: Jing Sun, Chuan Zhen Huang, Jun Wang
Abstract: Ceramic tool materials, 3Y-TZP added by TiN particles, were fabricated through hot-pressing techniques. The effects of TiN on their low-temperature degradation at 220# in air were investigated. It is shown that TiN can improve the stability of t-ZrO2 and inhibit the transformation from tetragonal to monoclinic phase, and that the content of TiN affects the stability of tetragonal phase and the propagation of tetragonal-to-monoclinic transformation into the specimen interiors. It is suggested that the grain-boundary phase prevents the nucleation of transformation, and that the high elastic modulus of TiN can prevent the propagation of phase transformation by resisting the volume expansion of transformation. When the content of TiN is 20wt%, the ceramic material shows better low temperature degradation resistance.
40
Showing 1 to 10 of 26 Paper Titles