Papers by Keyword: Type 316 Stainless Steel

Paper TitlePage

Authors: Woo Gon Kim, Hyun Hie Kim, Kee Bong Yoon, Woo Seog Ryu
Abstract: This paper is to evaluate the creep crack growth rate (CCGR) of the type 316SS series: 316SS, 316FR and 316LN, and to apply a creep ductility model. A number of the data are collected through wide literature surveys and experiment, and evaluated by the C* parameter. The results of the CCGR data were nearly matched with a small scattering band regardless of the different applied stresses, temperatures and test specimens configuration. In the CCGR, type 316FR and 316LN steels were slower than type 316SS. Type 316SS showed a better agreement in the application of the creep ductility model than the type 316FR and 316LN steels.
Authors: Shinobu Okido, Hiroshi Suzuki, K. Saito
Abstract: Residual stress generated in Type-316 austenitic stainless steel butt-weld jointed by Inconel-182 was measured using a neutron diffraction method and compared with values calculated using FEM analysis. The measured values of Type-316 austenitic stainless steel as base material agreed well with the calculated ones. The diffraction had high intensity and a sharp profile in the base metal. However, it was difficult to measure the residual stress at the weld metal due to very weak diffraction intensities. This phenomenon was caused by the texture in the weld material generated during the weld procedure. As a result, this texture induced an inaccurate evaluation of the residual stress. Procedures for residual stress evaluation to solve this textured material problem are discussed in this paper. As a method for stress evaluation, the measured strains obtained from a different diffraction plane with strong intensity were modified with the ratio of the individual elastic constant. The values of residual stress obtained using this method were almost the same as those of the standard method using Hooke’s law. Also, these residual stress values agreed roughly with those from the FEM analysis. This evaluation method is effective for measured samples with a strong texture like Ni-based weld metal.
Showing 1 to 3 of 3 Paper Titles