Detailed Structural Characterisation of Phosphor YAG:Ce3+ Particles Obtained via Spray Pyrolysis

Article Preview

Abstract:

The yttrium-aluminium garnet phase (YAG) represents a suitable host material for solidstate lasers and is widely used for various display applications being doped with rare-earth ions. Introduction of Ce3+ ion as a luminescence centre transforms it from insulating to effective phosphor material capable of emitting radiation in the visible spectrum. In this work Ce3+ doped YAG powder was obtained via aerosol route using nitrate precursor solution. Well-crystallized targeted phase was obtained after additional thermal treatment. A combination of different analysis techniques (differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy with determination of image metrology, energy dispersive spectroscopy, transmission electron microscopy) is used to obtain detailed information about the structural and morphological powder properties. The effects of both processing parameters and post annealing treatment conditions are discussed from the viewpoint of establishing the best relationship between them and produced YAG:Ce3+ crystal structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-112

Citation:

Online since:

July 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.L. Tuller: J. Phys. Chem. Solids Vol. 55 (1994), p.1393.

Google Scholar

[2] S.H. Cho, S.H. Kwon, J. S Yoo, C.W. Oh, J.D. Lee, K.J. Hong and S.J. Kwon: J. Electrochemical Soc. Vol. 147.

Google Scholar

[8] (2000), p.3143.

Google Scholar

[3] H.J. Lee, S.K. Hong, D.S. Jung and Y.C. Kang: Mater. Lett. Vol. 59 (2005), p.2383.

Google Scholar

[4] Y-T. Nien, Y-L Chen, I-G. Chen, C-S. Hwang, Y-K Su, S-J Chang and F-S Juang: Mater. Chem. Phys. Vol. 93 (2005), p.79.

Google Scholar

[5] Y. Pan, M. Wu and Q. Su: Mater. Sci. Engin. B Vol. 106 (2004), p.251.

Google Scholar

[6] Y.C. Kang, I.W. Lenggoro, S.B. Park and K. Okuyama: Mater. Res. Bullet. Vol. 35 (2000), p.789.

Google Scholar

[7] O. Milosevic, L. Mancic, S. Ohara, G. del Rosario and P. Vulic: in Characterisation and Control of Interfaces for High Quality Advanced Materials, Eds. K. Ewsuk, K. Nogi, M. Reiterer, A. Tomsia, S.J. Glass, R. Waesche, K. Uematsu and M. Naito: Ceram. Trans. Vol. 146 (2004).

DOI: 10.1002/9781118406038

Google Scholar

[8] O. Milosevic, L. Mancic, M.E. Rabanal, B. Yang and P.D. Townsend: J. Electrochemical Soc. Vol. 152.

Google Scholar

[9] (2005), p. G707.

Google Scholar

[9] G. del Rosario, S. Ohara, L. Mancic and O. Milosevic: Appl. Surf. Sci. Vol. 238 [1-4] (2004), p.469.

Google Scholar

[10] W. Cheary and A.A. Coelho: Programs XFIT and FOURYA, CCP14 Powder diffraction Library (Daresbury Laboratory, Warrington, England, 1996).

Google Scholar

[11] http: /www. imagemet. com.

Google Scholar

[12] M.B. Kakade, S. Ramanathan and P.V. Ravindran: J. Alloys Comp. Vol. 350 (2003), p.123.

Google Scholar

[13] D.R. Messier and G.E. Gazza: Ceram. Bull. Vol. 51.

Google Scholar

[9] (1972), p.693.

Google Scholar

[14] C.E. Hall: Introduction to Electron Microscopy (Mc Graw Hill, New York 1953).

Google Scholar

[15] E. Zych, C. Brecher and J. Glodo: J Phys. Cond. Matter Vol. 12 (2000), p. (1947).

Google Scholar