Modelling of Precipitation Hardening in Alloys: Effective Analytical Submodels for Impingement and Coarsening

Article Preview

Abstract:

To predict strength evolution of precipitation hardening alloys, a wide range of modelling approaches have been proposed. The most accurate published models are physics-based approaches which use both nanoscale processes with their related constants and parameters, as well as parameters calibrated to one or more macroscale measurements of yield strength of one or more samples. Recent developments in submodels including analytical expressions for volume fraction and size evolution including impingement and coarsening are reviewed. It is also shown that Kampmann-Wagner and JMAK models are generally not consistent with data on the progress of precipitations in the main precipitation hardening Al alloys systems, and improved model formulations are described.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

2365-2370

Citation:

Online since:

March 2007

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.J. Starink and S.C. Wang: Acta Mater., Vol. 51 (2003) p.5131.

Google Scholar

[2] H.R. Shercliff and M.F. Ashby: Acta Metall. Mater., Vol. 38 (1990) p.1789.

Google Scholar

[3] J.W. Evancho and J.T. Staley: Metall. Trans., Vol. 5 (1974) p.43.

Google Scholar

[4] J.T. Staley: Mater. Sci. Techn., Vol. 3 (1987) p.923.

Google Scholar

[5] V. Sessa, M. Fanfoni and M. Tomellini: Phys. Rev. B, Vol. 54 (1996) p.836.

Google Scholar

[6] A.A. Burbelko, E. Fraś and W. Kapturkiewicz, Mater. Sci. Eng. A: Vol. 413-414 (2005) p.429.

Google Scholar

[7] R. Wagner and R. Kampmann, in Mater. Sci. and Techn.: A Comprehensive Treatment: Phase Transf. in Mater., Ed. by R. Cahn, P. Haasen and E.J. Kramer, Wiley-VCH, Vol. 5 (1990), p.215.

Google Scholar

[8] M.J. Starink and A. -M. Zahra: Thermochim. Acta, Vol 292 (1997) p.159.

Google Scholar

[9] M.J. Starink: J. Mater. Sci., Vol. 36 (2001) p.4433.

Google Scholar

[10] Eon-Sik Lee and Young G. Kim: Acta Metall. Mater., Vol. 38 (1990) p.1669.

Google Scholar

[11] M.J. Starink and A. -M. Zahra: Acta Mater., Vol. 46 (1998) p.3381.

Google Scholar

[12] P.A. Rometsch, M.J. Starink and P.J. Gregson: Mater. Sci. Eng. A, Vol. 339 (2003) p.255.

Google Scholar

[13] M.J. Starink and X.M. Li: Metall Mater Trans A, Vol 34A (2003) p.899.

Google Scholar

[14] M.K. Miller, K.F. Russell, P.J. Pareige, M.J. Starink and R.C. Thomson: Mater. Sci. Eng. A, Vol. 250 (1998) p.49.

Google Scholar

[15] M.J. Starink, N. Gao, J.L. Yan: Mater. Sci. Eng. A, Vol. 387-389 (2004) p.222.

Google Scholar

[16] M.J. Starink: Int. Mater. Rev., Vol. 49 (2004) p.191.

Google Scholar

[17] M.J. Starink, to be submitted (2006).

Google Scholar

[18] G. Liu, G.J. Zhang, X.D. Ding, J. Sun and K.H. Chen: Mater. Sci. Eng. A 344 (2003), p.113.

Google Scholar

[19] R. Poduri and L.Q. Chen: Acta Mater. 46 (1998) 3915.

Google Scholar

[20] S.P. Marsh SP and M.E. Glicksman: Acta Mater., Vol. 44 (1996) p.3761.

Google Scholar

[21] W. Voorhees and M.E. Glicksman: Acta Metall., Vol. 32 (1984) p. (2013).

Google Scholar

[22] A.J. Ardell: Acta Metall., Vol. 20 (1972) p.61.

Google Scholar

[23] J.L. Yan, MPhil/PhD Transfer Thesis, University of Southampton, (2004).

Google Scholar