Extending Creep and Superplasticity to Materials with Submicrometer Grain Sizes

Article Preview

Abstract:

The mechanisms of creep and superplasticity occurring in conventional large-grained materials are now understood reasonably well. However, very recent advances in the processing of theoretically-dense metals with submicrometer grain sizes have provided the opportunity to extend the understanding of flow behavior to include materials where the grains are exceptionally small. Using processing through the application of severe plastic deformation, as in procedures such as equal-channel angular pressing, it is now feasible to fabricate relatively large samples having ultrafine grain sizes in the submicrometer or nanometer range. This paper examines these recent advances and gives examples of the flow behavior in ultrafine-grained aluminum alloys.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 345-346)

Pages:

539-544

Citation:

Online since:

August 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.G. Langdon: Z. Metallkd. 96 (2005) 522.

Google Scholar

[2] M.E. Kassner and M. -T. Pérez-Prado: Prog. Mater. Sci. 45 (2000) 1.

Google Scholar

[3] F.R.N. Nabarro, in: Report of a Conference on Strength of Solids (The Physical Society, London, U.K., 1948), p.75.

Google Scholar

[4] C. Herring: J. Appl. Phys. 21 (1950) 437.

Google Scholar

[5] R.L. Coble: J. Appl. Phys. 34 (1963) 1679.

Google Scholar

[6] T.G. Langdon: Acta Metall. Mater. 42 (1994) 2437.

Google Scholar

[7] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. 45 (2000) 103.

Google Scholar

[8] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer and Y.T. Zhu: JOM 58 (4) (2006) 33.

Google Scholar

[9] R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci. 51 (2006) 881.

Google Scholar

[10] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T.G. Langdon: Scripta Mater. 35 (1996) 143.

Google Scholar

[11] Z. Horita, T. Fujinami and T.G. Langdon: Mater. Sci. Eng. A318 (2001) 34.

Google Scholar

[12] C. Xu, M. Furukawa, Z. Horita and T.G. Langdon: Acta Mater. 51 (2003) 6139.

Google Scholar

[13] C. Xu, M. Furukawa, Z. Horita and T.G. Langdon: Acta Mater. 53 (2005) 749.

Google Scholar

[14] K. Higashi, M. Mabuchi and T.G. Langdon: ISIJ Intl. 36 (1996) 1423.

Google Scholar

[15] S.D. Terhune, D.L. Swisher, K. Oh-ishi, Z. Horita, T.G. Langdon and T.R. McNelley: Metall. Mater. Trans. A 33A (2002) 2173.

DOI: 10.1007/s11661-002-0049-x

Google Scholar

[16] S. Komura, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon: Metall. Mater. Trans. A 32A (2001) 707.

Google Scholar

[17] V. Sklenicka, J. Dvorak, M. Svoboda, P. Kral, M. Kvapilova and Z. Horita, in: Ultrafine Grained Materials IV, edited by Y.T. Zhu, T.G. Langdon, Z. Horita, M.J. Zehetbauer, S.L. Semiatin and T.C. Lowe (The Minerals, Metals and Materials Society, Warrendale, PA, 2006), p.459.

DOI: 10.1016/j.msea.2012.08.019

Google Scholar

[18] V. Sklenicka, J. Dvorak, M. Kvapilova, M. Svoboda, P. Kral, I. Saxl and Z. Horita, in: Proceedings of THERMEC 2006 (Trans Tech, Uetikon-Zuerich, Switzerland), in press.

Google Scholar