Ca-SiAlON Glasses: Effects of Fluorine on Glass Formation and Properties

Article Preview

Abstract:

Oxynitride glasses are effectively alumino-silicate glasses in which nitrogen substitutes for oxygen in the glass network, resulting in increases in glass transition and softening temperatures, viscosities (by two to three orders of magnitude), elastic moduli and microhardness. Calcium alumino-silicate glasses containing fluorine are known to have useful characteristics as potential bioactive materials. Therefore, the combination of both nitrogen and fluorine additions to these glasses may give useful bioglasses with enhanced mechanical stability. This paper gives a review of oxynitride glasses and reports glass formation and evaluation of glass properties in the Ca-Si-Al-O-N-F system. Within the previously defined glass forming region in the Ca-Si-Al-O-N system, homogeneous, dense glasses are formed. However, addition of fluorine affects glass formation and reactivity of the glass melts and can lead to fluorine loss as SiF4, but also nitrogen loss, and cause bubble formation. At high fluorine and high Ca contents under conditions when Ca- F bonding is favoured, CaF2 crystals precipitate in the glass. It was found that fluorine expands the glass forming region of Ca-Sialon system and facilitates the solution of nitrogen into the melt.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-172

Citation:

Online since:

August 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Hampshire: J. Non-Cryst. Sol., Vol. 316, (2003) p.64.

Google Scholar

[2] R. A. L. Drew, S. Hampshire and K. H. Jack: Proc. Brit. Ceram. Soc., Vol. 31 (1981), p.119.

Google Scholar

[3] R. E. Loehman: J. Mater. Sci. Tech., Vol. 26 (1985), p.119.

Google Scholar

[4] S. Hampshire, R. A. L. Drew and K. H. Jack: Phys. Chem. Glass., Vol. 26, No. 5 (1985), p.182.

Google Scholar

[5] G. Leng-Ward and M. H. Lewis: in Glasses and Glass-Ceramics, ed. M. H. Lewis, Chapman and Hall, London, (1990), p.106.

Google Scholar

[6] R. E. Loehman: J. Non-Cryst. Sol., Vol. 56, (1983) p.123.

Google Scholar

[7] R. Hill, D. Wood and M. Thomas, J. Mater. Sci., Vol. 34, (1999), p.1767.

Google Scholar

[8] A. Stamboulis, R. G. Hill and R. V. Law: J. Non-Cryst. Sol., Vol. 333, (2004) p.101.

Google Scholar

[9] T. Maeda, S. Matsuya and M. Ohta, J. Dent. Mater., Vol. 17 (2), (1998), p.104.

Google Scholar

[10] S. Hampshire, E. Nestor, R. Flynn, J.L. Besson, T. Rouxel, H. L. Lemrcier, P. Goursat, M. Sebai, D. P. Thompson and K. Liddell: J. Euro. Ceram. Soc., 14, (1994) p.261.

DOI: 10.1016/0955-2219(94)90095-7

Google Scholar

[11] K. T. Stanton and R. G. Hill: J. Non-Cryst. Sol., Vol. 275, (2005) p. (2061).

Google Scholar

[12] P. Jankowski and S. H. Risbud: J. Mater. Sci., Vol. 18 (1983), p. (2087).

Google Scholar

[13] W. Loewenstein and M. Loewenstein: J. Amer. Mineral., Vol. 39, (1954) p.92.

Google Scholar

[14] R. G. Hill, C. Goat and D. Wood: J. Amer. Ceram. Soc., Vol. 75.

Google Scholar

[4] (1992) p.778.

Google Scholar

[15] S. H. Risbud, R. J. Kirkpatrick, A. P. Taglialavore and B. Montez: J. Amer. Ceram. Soc., Vol. 70, (1987), p. C10.

Google Scholar

[16] A. Rafferty, A. Clifford, R. Hill, D. Wood, B. Samuneva and M. Dimitrova-Lukacs: J. Amer. Ceram. Soc., Vol. 83, No 11, (2000) p.2833.

DOI: 10.1111/j.1151-2916.2000.tb01640.x

Google Scholar

[17] E.M. Levin, C.R. Robbins, H. F. McMurdie: Phase Diagram for Ceramists, American Ceramic Society, Columbus, OH, (1964) p.220.

Google Scholar

[18] M. J. Pomeroy, C. Mulcahy, S. Hampshire: J. Am. Ceram. Soc., Vol. 86 No 3 (2003), p.458.

Google Scholar