Synthesis and Characterization of Biphasic Calcium Phosphate/ Poly-(DL-Lactide-Co-Glycolide) Biocomposite

Article Preview

Abstract:

In this paper we report the results on synthesis of a composite biomaterial based on biphasic calcium phosphate (BCP) and poly-(DL-lactide-co-glycolide) (DLPLG). Besides, we have investigated the influence of new synthesis method on the structure and characteristics of the composite. The synthesis of biphasic calcium phosphate from Ca(NO3)2 x 4H2O and (NH4)3 PO4 in alkali environment was performed by means of precipitation technique. Composite material BCP/DLPLG was first prepared from commercial granules using chemical methods. Powdered polymer DLPLG was then homogenized at appropriate ratio with addition of biphasic calcium phosphate into the suspension. All samples were characterized by DSC, IR, X-Ray and SEM techniques.

You might also be interested in these eBooks

Info:

[1] W. Suchanek, M. Yoshimura, Journal of Materials Research, Vol. 13 (1998), p.94.

Google Scholar

[2] N. Ignjatović, PhD Thesis, University of Belgrade, (2001).

Google Scholar

[3] N. Ignjatović, M. Plavšić, M. Miljković, Lj. Živković, D. Uskoković, Journal of Microscopy, Vol. 196 (1999), p.243.

Google Scholar

[4] N. Ignjatović, S. Tomić, M. Dakić, M. Miljković, M. Plavšić, D. Uskoković, Biomaterials, Vol. 20 (1999), p.809.

Google Scholar

[5] H. Murakami, M. Kobayashi, H. Takeuchi and Y Kawashima, International Journal of Pharmaceutics, Vol. 187 (1999), p.143.

Google Scholar

[6] C. Durucan, P. W. Brown, Journal of Biomedical Materials Research, Vol. 51 (4) (2000), p.726.

Google Scholar

[7] H. M. Elgendy, M. E. Norman, A. R. Keaton and C. T. Laurencin, Biomaterials, Vol. 14 (1993), p.263.

Google Scholar

[8] M. Ara, M. Watanabe, Y. Imai, Biomaterials Vol. 23 (2002), p.2479.

Google Scholar

[9] R. Zhang, P. X. Ma, Composite scaffolds for bone tissue engineering degradation, 47th Annual Meeting, Orthopedic research Society, February 25-28, San Francisco, California, (2001).

Google Scholar

[10] R. Zhang, P. X. Ma., Journal of Biomedical Materials Research, Vol. 44 (1999), p.446.

Google Scholar

[11] U. Takashi, C. Guoping, T. Tamotsu, U. Zoshikayu, T. Tetsuza, Key Engineering Materials, Vol. 192-195 (2001), p.519.

Google Scholar

[12] R. C. Thomson, M. J. Yaszemski, J. M. Powers, A. G. Mikos, Biomaterials, Vol. 19 (1998), p. (1935).

Google Scholar

[13] C. G Simon, C. A Khatri, S. A Wight, F. W. Wang, Journal of Orthopedic Research, Vol. 20(3) (2002), p.473.

Google Scholar

[14] I. Calandrelli, B. Immirzi, M. Malinconico, M.G. Volpe, A. Oliva, F. Della Ragione, Polymer, Vol. 41 (2000), p.8027.

DOI: 10.1016/s0032-3861(00)00165-8

Google Scholar

[15] K. G. Marra, L. E. Weiss, J. W. Calvert, P. N. Kumta; Biocompatible compositions and methods of using same , United States Patent 6, 165, 486, Dec. 26, (2000).

Google Scholar

[16] J. K Sherwood, S. L Riley, R. Palazzolo, S. C. Brown, D. C. Monkhouse, M. Coates, L. G. Griffith, L. K Landeen, A. T. Ratcliffe, Biomaterials, Vol. 23(24) (2002), p.4739.

DOI: 10.1016/s0142-9612(02)00223-5

Google Scholar

[17] T. Watanabel, S. Ban, T. Itol, S. Tsuruta, T. Kawai, H. Nakamura, Bioceramics, Vol. 15 (1999), p.24.

Google Scholar

[18] H.M. Rietveld, J. Appl. Cryst., 2 (1969), p.65.

Google Scholar

[19] M. Kiremitci-Gumusderelioglu, G. Deniz, Turk J. Chem., Vol. 23 (1999), p.153.

Google Scholar

[20] JCPDS File No. 34-0010 (HAp), International Center for Diffraction Data.

Google Scholar

[21] JCPDS File No. 9-0432 (β-TCP), International Center for Diffraction Data.

Google Scholar

[22] N. Ignjatovic, A. Nastasovic, V. Laninovic, A. Onjia, M. Miljkovic and V. Konstatinovic, Material Science Forum, Vol. 453-454 (2004), p.543.

Google Scholar

[23] S. Raynaud , E. Champion, D. Assollant, J. Laval, J. Am. Ceram. Soc., Vol. 84 (2001), p.359.

Google Scholar

[24] S. Raynaud, E. Champion, D. Bernache-Assolant, J. -P. Laval, J. Am. Ceram. Soc., Vol. 84 (2) (2001), p.359.

Google Scholar