Local Stability and Hopf Bifurcation Analysis of the Arneodo’s System

Article Preview

Abstract:

The chaotic behaviors of the Arneodo’s system are investigated in this paper. Based on the Arneodo's system characteristic equation, the equilibria of the system and the conditions of Hopf bifurcations are obtained, which shows that Hopf bifurcations occur in this system. Then using the normal form theory, we give the explicit formulas which determine the stability of bifurcating periodic solutions and the direction of the Hopf bifurcation. Finally, some numerical examples are employed to demonstrate the effectiveness of the theoretical analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2550-2557

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sparrow C. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. New York: SpringerVerlag; (1982).

DOI: 10.1007/978-1-4612-5767-7

Google Scholar

[2] Chen G, Dong X. From chaos to order: methodologies, perspectives and applications. Singapore: World Scientific; (1998).

Google Scholar

[3] Chen G, Ueta T. Yet another chaotic attractor. Int J Bifurcation & Chaos 1999; 9: 1465-1466.

DOI: 10.1142/s0218127499001024

Google Scholar

[4] Liu C, Liu T, Liu L, Liu K. A new chaotic attractor. Chaos, Solitons & Fractals 2004; 22: 1031-1038.

DOI: 10.1016/j.chaos.2004.02.060

Google Scholar

[5] Lorenz EN. Deterministic non-periodic flows. J Atmos Sci 1963; 20: 130-141.

Google Scholar

[6] Arneodo A, Coullet P, Spiegel E, Tresser C. Asymptotic chaos. Physica D 1985; 14(3): 327C47.

DOI: 10.1016/0167-2789(85)90093-4

Google Scholar

[7] Jiang S, Tian L, Wang X. Control of Arneodo chaotic system. Journal of J iangsu University(Natural Science Edition) 2005; 26(6): 492-495.

Google Scholar

[8] Lu J. Chaotic dynamics and synchronization of fractional-order Arneodo's systems. Chaos, Solitons & Fractals 2005; 26: 1125-1133.

DOI: 10.1016/j.chaos.2005.02.023

Google Scholar

[9] Li C G, Chen G R. Hopf bifurcation in an Internet congestion control model. Chaos, Solitons & Fractals 2004; 19: 853-862.

DOI: 10.1016/s0960-0779(03)00269-8

Google Scholar

[10] Wang H P, Li J, Zhang K. Stability and Hopf bifurcation of Maglev System with Delayed Speed Feedback Control. Acta Automatica Sinica. 2007; 33(8): 829-834.

DOI: 10.1360/aas-007-0829

Google Scholar

[11] Fang S L, Jiang M H. Stability and Hopf bifurcation for a regulated logistic growth model with discrete and distributed delys. Commun Nolinear Sci Numer Simulat. 2009; 14: 4292-4303.

DOI: 10.1016/j.cnsns.2009.03.006

Google Scholar

[12] Hassard B, Kazarinoff N, Wan Y. Theory and application of Hopf bifurcation. Cambridge: Cambridge University Press; (1981).

Google Scholar

[13] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Field. New York: Springer; (1983).

Google Scholar