[1]
C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, W. Equitz, Efficient and effective querying by image content, Journal of intelligent information systems, 3 (3–4), 231-262, (1994).
DOI: 10.1007/bf00962238
Google Scholar
[2]
A. Pentland, R.W. Picard, S. Scaroff, Photobook: content-based manipulation for image databases, International journal of computer vision, 18 (3), 233-254, (1996).
DOI: 10.1007/bf00123143
Google Scholar
[3]
A. Gupta, R. Jain, Visual information retrieval, Communication of the ACM, 40 (5), 70–79, (1997).
Google Scholar
[4]
J.R. Smith, S.F. Chang, VisualSeek: a fully automatic contentbased query system, Proceedings of the Fourth ACM International Conference on Multimedia, 87–98, (1996).
DOI: 10.1145/244130.244151
Google Scholar
[5]
W.Y. Ma, B. Manjunath, Netra: a toolbox for navigating large image databases, Proceedings of the IEEE International Conference on Image Processing, 568–571, (1997).
DOI: 10.1109/icip.1997.647976
Google Scholar
[6]
J.Z. Wang, J. Li, G. Wiederhold, SIMPLIcity: semantics-sensitive integrated matching for picture libraries, IEEE Trans. Pattern Anal. Mach. Intell, 23 (9), 947–963, (2001).
DOI: 10.1109/34.955109
Google Scholar
[7]
I.K. Sethi, I.L. Coman, Mining association rules between low-level image features and high-level concepts, Proceedings of the SPIE Data Mining and Knowledge Discovery, 3, 279–290, (2001).
DOI: 10.1117/12.421083
Google Scholar
[8]
R. Datta, D. Joshi, J. Li, et al., Image retrieval: ideas, influences, and trends of the new age, ACM Trans. Comput. Surv., 20, 1–65, (2007).
DOI: 10.1145/1348246.1348248
Google Scholar
[9]
Min, H., Huazhong, S., Yaqiong, M., Qiuping, G., Content-based image retrieval technology using multi-feature fusion, Optik-International Journal for Light and Electron Optics, (2015).
DOI: 10.1016/j.ijleo.2015.05.095
Google Scholar
[10]
Yılmaz, İ., Güllü, M., Baybura, T., Erdoğan, O., Renk Uzayları ve Renk Dönüşüm Programı, (2000).
Google Scholar
[11]
Gonzalez, Rafael C., Richard E. Woods, Digital image processing, (2002).
Google Scholar
[12]
Stricker, Markus A., Markus Orengo, Similarity of color images, IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology, International Society for Optics and Photonics, (1995).
Google Scholar
[13]
Haralick, R. M., Shanmugam, K., Dinstein, I. H., Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on, 610-621, (1973).
DOI: 10.1109/tsmc.1973.4309314
Google Scholar
[14]
Soh, L. K., Tsatsoulis, C., Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices, Geoscience and Remote Sensing, IEEE Transactions on, 37(2), 780-795, (1999).
DOI: 10.1109/36.752194
Google Scholar
[15]
Mohamad, I. B., Usman, D., Standardization and its effects on k-means clustering algorithm, Res. J. Appl. Sci. Eng. Technol, 6(17), 3299-3303, (2013).
DOI: 10.19026/rjaset.6.3638
Google Scholar
[16]
N. Jhanwar, S. Chaudhuri, G. Seetharaman, B. Zavidoviqu, Content based image retrieval using motif co-occurrence matrix, Image and Vision. Computing, 22 (14), 1211-1220, (2004).
DOI: 10.1016/j.imavis.2004.03.026
Google Scholar
[17]
P.W. Huang, S.K. Dai, Image retrieval by texture similarity, Pattern Recognit. 36 (3), 665–679, (2003).
DOI: 10.1016/s0031-3203(02)00083-3
Google Scholar