[1]
A. D. Franklin, M. Luisier, S. J. Han, G. Tulevski, C. M. Breslin, L. Gignac, M. S. Lundstrom, W. Haensch, Sub-10 nm Carbon Nanotube Transistor. Nano Lett. 12 (2012), 758-762.
DOI: 10.1021/nl203701g
Google Scholar
[2]
M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. -Y. Chen, H. S. P. Wong, S. Mitra, Carbon nanotube computer. Nature 501, 526-530 (2013).
DOI: 10.1038/nature12502
Google Scholar
[3]
M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Carbon Nanotubes: Present and Future Commercial Applications. Science 339 (2013), 535-539.
DOI: 10.1126/science.1222453
Google Scholar
[4]
T. Wang, K. Jeppson, L. L. Ye, J. Liu, Carbon-Nanotube Through-Silicon Via Interconnects for Three-Dimensional Integration. Small 7 (2011), 2313-2317.
DOI: 10.1002/smll.201100615
Google Scholar
[5]
N. Nemec, D. Tománek, G. Cuniberti, Contact Dependence of Carrier Injection in Carbon Nanotubes: An Ab~Initio Study. Physical Review Letters 96 (2006), 076802.
DOI: 10.1103/physrevlett.96.076802
Google Scholar
[6]
A. Andriotis, M. Menon, H. Gibson, Realistic nanotube-metal contact configuration for molecular electronics applications. IEEE Sensors Journal 8(2008), 910-914.
DOI: 10.1109/jsen.2008.923926
Google Scholar
[7]
S. Johannes, E. B. C. Eleanor, Schottky barriers in carbon nanotube-metal contacts. J. Appl. Phys. 110 (2011), 111101.
Google Scholar
[8]
C. Nicolo', M. Sugiura, K. Yusaku, L. Yunlong, A. Kai, R. Olivier, J. C. Daire, H. Marc, G. Stefan De, G. Guido, M. V. Philippe, Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects. Nanotechnology 22 (2011).
Google Scholar
[9]
C. Lan, D. N. Zakharov, R. G. Reifenberger, Determining the optimal contact length for a metal/multiwalled carbon nanotube interconnect. Appl. Phys. Lett. 92(2008), 213112.
DOI: 10.1063/1.2931081
Google Scholar
[10]
M. Chen, X. Song, S. Liu, Z. Gan, Q. Lv, Batch welding of aligned carbon nanotube onto metal electrodes. Microsyst Technol 18 (2012), 679-682.
DOI: 10.1007/s00542-012-1494-0
Google Scholar
[11]
L. Dong, S. Youkey, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebiam, Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes. Journal of Applied Physics 101 (2007), 024320.
DOI: 10.1063/1.2430769
Google Scholar
[12]
C. Changxin, Z. Yafei, L. Liyue, L. Yang, E. S. W. Kong, S. Xinjun, D. Han, A method for creating reliable and low-resistance contacts between carbon nanotubes and microelectrodes. Carbon 45 (2007), 436-442.
DOI: 10.1016/j.carbon.2006.08.021
Google Scholar
[13]
W. Yunsung, S. D. Georg, R. Siegmar, Reduced contact resistance between an individual single-walled carbon nanotube and a metal electrode by a local point annealing. Nanotechnology 18 (2007), 095203.
DOI: 10.1088/0957-4484/18/9/095203
Google Scholar
[14]
C. Chen, T. Jin, Y. Zhang. Progress in improvement methods of carbon nanotube/metal contact. Journal of Inorganic Materials 27(2012), 449-457.
DOI: 10.3724/sp.j.1077.2012.00449
Google Scholar
[15]
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1995), 1-19.
Google Scholar
[16]
H. Wang, X. Wang, Y. Wang, H. Liang. Molecular dynamics simulations of low index surfaces melting behaviors for metal Cu. Acta Phys. Chim. Sin. 22 (2006), 1367-1371.
Google Scholar
[17]
M. S. Daw, M. I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Physical Review Letters 50 (1983), 1285-1288.
DOI: 10.1103/physrevlett.50.1285
Google Scholar
[18]
S. Banerjee, S. Naha, I. K. Puri, Molecular simulation of the carbon nanotube growth mode during catalytic synthesis. Applied Physics Letters 92 (2008), 3.
DOI: 10.1063/1.2945798
Google Scholar
[19]
S. J. Stuart, A. B. Tutein, J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. The Journal of Chemical Physics 112 (2000), 6472-6486.
DOI: 10.1063/1.481208
Google Scholar
[20]
W. G. Hoover, Constant-pressure equations of motion. Phys. Rev. A, Gen. Phys. 34 (1986), 2499-2500.
DOI: 10.1103/physreva.34.2499
Google Scholar
[21]
W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A, Gen. Phys. 31 (1985), 1695-1697.
DOI: 10.1103/physreva.31.1695
Google Scholar
[22]
H. Y. Yang, W. Y. Hu, S. F. Xiao, Surface melting of close-packed Mg(0001). Solid State Commun. 143 (2007), 545-549.
DOI: 10.1016/j.ssc.2007.07.003
Google Scholar