Microstructural Investigation of CNT-Metal Bonding Behavior through Computational Simulations

Article Preview

Abstract:

Mechanism of CNT-metal bonding is investigated using molecular dynamics in this study. Both bonding and debonding process are considered. It is shown that the bonding can be achieved at a temperature lower than the melting point. The surface melting and capillary wetting dominate the bonding process. In addition, there are two potential failure positions, one is at CNT-Ni interface and the other is at nickel surface which are determined by the strength competition of these two interfaces. To obtain high bonding strength we should form coalescence structure between CNT and the metal at a higher temperature to achieve larger contact length. Also we find that the debonding process experiences elastic deformation followed by debonding at CNT-Ni or Ni–Ni interface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-125

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. D. Franklin, M. Luisier, S. J. Han, G. Tulevski, C. M. Breslin, L. Gignac, M. S. Lundstrom, W. Haensch, Sub-10 nm Carbon Nanotube Transistor. Nano Lett. 12 (2012), 758-762.

DOI: 10.1021/nl203701g

Google Scholar

[2] M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. -Y. Chen, H. S. P. Wong, S. Mitra, Carbon nanotube computer. Nature 501, 526-530 (2013).

DOI: 10.1038/nature12502

Google Scholar

[3] M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Carbon Nanotubes: Present and Future Commercial Applications. Science 339 (2013), 535-539.

DOI: 10.1126/science.1222453

Google Scholar

[4] T. Wang, K. Jeppson, L. L. Ye, J. Liu, Carbon-Nanotube Through-Silicon Via Interconnects for Three-Dimensional Integration. Small 7 (2011), 2313-2317.

DOI: 10.1002/smll.201100615

Google Scholar

[5] N. Nemec, D. Tománek, G. Cuniberti, Contact Dependence of Carrier Injection in Carbon Nanotubes: An Ab~Initio Study. Physical Review Letters 96 (2006), 076802.

DOI: 10.1103/physrevlett.96.076802

Google Scholar

[6] A. Andriotis, M. Menon, H. Gibson, Realistic nanotube-metal contact configuration for molecular electronics applications. IEEE Sensors Journal 8(2008), 910-914.

DOI: 10.1109/jsen.2008.923926

Google Scholar

[7] S. Johannes, E. B. C. Eleanor, Schottky barriers in carbon nanotube-metal contacts. J. Appl. Phys. 110 (2011), 111101.

Google Scholar

[8] C. Nicolo', M. Sugiura, K. Yusaku, L. Yunlong, A. Kai, R. Olivier, J. C. Daire, H. Marc, G. Stefan De, G. Guido, M. V. Philippe, Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects. Nanotechnology 22 (2011).

Google Scholar

[9] C. Lan, D. N. Zakharov, R. G. Reifenberger, Determining the optimal contact length for a metal/multiwalled carbon nanotube interconnect. Appl. Phys. Lett. 92(2008), 213112.

DOI: 10.1063/1.2931081

Google Scholar

[10] M. Chen, X. Song, S. Liu, Z. Gan, Q. Lv, Batch welding of aligned carbon nanotube onto metal electrodes. Microsyst Technol 18 (2012), 679-682.

DOI: 10.1007/s00542-012-1494-0

Google Scholar

[11] L. Dong, S. Youkey, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebiam, Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes. Journal of Applied Physics 101 (2007), 024320.

DOI: 10.1063/1.2430769

Google Scholar

[12] C. Changxin, Z. Yafei, L. Liyue, L. Yang, E. S. W. Kong, S. Xinjun, D. Han, A method for creating reliable and low-resistance contacts between carbon nanotubes and microelectrodes. Carbon 45 (2007), 436-442.

DOI: 10.1016/j.carbon.2006.08.021

Google Scholar

[13] W. Yunsung, S. D. Georg, R. Siegmar, Reduced contact resistance between an individual single-walled carbon nanotube and a metal electrode by a local point annealing. Nanotechnology 18 (2007), 095203.

DOI: 10.1088/0957-4484/18/9/095203

Google Scholar

[14] C. Chen, T. Jin, Y. Zhang. Progress in improvement methods of carbon nanotube/metal contact. Journal of Inorganic Materials 27(2012), 449-457.

DOI: 10.3724/sp.j.1077.2012.00449

Google Scholar

[15] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1995), 1-19.

Google Scholar

[16] H. Wang, X. Wang, Y. Wang, H. Liang. Molecular dynamics simulations of low index surfaces melting behaviors for metal Cu. Acta Phys. Chim. Sin. 22 (2006), 1367-1371.

Google Scholar

[17] M. S. Daw, M. I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Physical Review Letters 50 (1983), 1285-1288.

DOI: 10.1103/physrevlett.50.1285

Google Scholar

[18] S. Banerjee, S. Naha, I. K. Puri, Molecular simulation of the carbon nanotube growth mode during catalytic synthesis. Applied Physics Letters 92 (2008), 3.

DOI: 10.1063/1.2945798

Google Scholar

[19] S. J. Stuart, A. B. Tutein, J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. The Journal of Chemical Physics 112 (2000), 6472-6486.

DOI: 10.1063/1.481208

Google Scholar

[20] W. G. Hoover, Constant-pressure equations of motion. Phys. Rev. A, Gen. Phys. 34 (1986), 2499-2500.

DOI: 10.1103/physreva.34.2499

Google Scholar

[21] W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A, Gen. Phys. 31 (1985), 1695-1697.

DOI: 10.1103/physreva.31.1695

Google Scholar

[22] H. Y. Yang, W. Y. Hu, S. F. Xiao, Surface melting of close-packed Mg(0001). Solid State Commun. 143 (2007), 545-549.

DOI: 10.1016/j.ssc.2007.07.003

Google Scholar