Temperature- and Time-Dependent Penetration of Surface Structures in Thermal Joining of Plastics to Metals

Article Preview

Abstract:

The temperature- and time-dependent penetration of surface structures is examined in thermal joining between polypropylene and aluminum. Experimental and numerical investigations were carried out for spot joints in order to describe the main effects on structure penetration. Further investigations were performed in a half-section setup to gain information directly from the joining zone. The thermal expansion of the thermoplastic material as well as the temperature distribution in the melting layer were identified as key parameters for structure filling on the metal surface.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] S. Katayama, Y. Kawahito, Y. Niwa, S. Kubota, Laser-Assisted Metal and Plastic Joining, Proceedings of the LANE 2007: Laser Assisted Net Shape Engineering 5 (2007) 41-51.

DOI: 10.2351/1.5061099

Google Scholar

[2] M. Stambke, K. Schricker, J. P. Bergmann, A. Weiß, Laser-based joining of metal-thermoplastic tailored welded blanks, Welding in the World 61 (2017), 563-573.

DOI: 10.1007/s40194-017-0429-x

Google Scholar

[3] G. Habenicht, Kleben, Springer Berlin Heidelberg (2009).

Google Scholar

[4] A. Heckert, M. F. Zaeh, Laser Surface Pre-treatment of Aluminium for Hybrid Joints with Glass Fibre Reinforced Thermoplastics, Physics Procedia 56 (2014) 1171-1181.

DOI: 10.1016/j.phpro.2014.08.032

Google Scholar

[5] S. M. Goushegir, Friction Spot Joining of Metal-Composite Hybrid Structures, Helmholtz-Zentrum Geesthacht, HZG REPORT 2015-5 (2015).

Google Scholar

[6] A. Heckert, C. Singer, M. F. Zaeh, R. Daub, T. Zeilinger, Gas-tight thermally joined metal-thermoplastic connections by pulsed laser surface pre-treatment, Physics Procedia 83 (2016) 1083-1093.

DOI: 10.1016/j.phpro.2016.08.114

Google Scholar

[7] K. Schricker, M. Stambke, J. P. Bergmann, Laser-Based Joining of Thermoplastics to Metals: Influence of Varied Ambient Conditions on Joint Performance and Microstructure, International Journal of Polymer Science (2016).

DOI: 10.1155/2016/5301081

Google Scholar

[8] M. Bielenin, K. Szallies, J. P. Bergmann, C. Neudel, Single Side Resistance Spot Welding of Polymer-Metal-Hybrid Structures, Proceedings Euro Hybrid Materials & Structures (2016) 236-240.

DOI: 10.1007/s40194-019-00728-x

Google Scholar

[9] C. Ageorges, L. Ye, Resistance Welding of Metal/Thermoplastic Composite Joints, Journal of Thermoplastic Composite Materials 14 (2001) 449-475.

DOI: 10.1106/pn74-qxkh-7xbe-xkf5

Google Scholar

[10] DIN EN ISO 11357-1, Plastics – Differential scanning calorimetry (DSC). Part 1: General principles (2010).

Google Scholar

[11] G. W. Ehrenstein, G. Riedel, P. Trawiel, Thermal Analysis of Plastics, Hanser Munich (2004).

Google Scholar

[12] DIN 51006, Thermal analysis (TA) – Thermogravimetry (TG) – Principles (2005).

Google Scholar

[13] K. Schricker, S. Diller, J. P. Bergmann, Bubble formation in thermal joining of plastics with metals, Procedia CIRP 74 (2018) 518-523.

DOI: 10.1016/j.procir.2018.08.132

Google Scholar

[14] K. Schricker, J. P. Bergmann, Determination of sensitivity and thermal efficiency in laser assisted metal-plastic joining by numerical simulation, Procedia CIRP 74 (2018) 511-517.

DOI: 10.1016/j.procir.2018.08.133

Google Scholar

[15] K. Schricker, J. P. Bergmann, M. Hopfeld, L. Spieß, Characterization of the joining zone in laser direct joining between thermoplastics and metals, Proceedings Hybrid Materials & Structures (2018) 210-215.

Google Scholar

[16] K. Schricker, M. Stambke, J. P. Bergmann, Experimental investigations and modeling of the melting layer in polymer-metal hybrid structures, Welding in the World 59 (2015) 407-412.

DOI: 10.1007/s40194-014-0213-0

Google Scholar

[17] Autodesk, Autodesk Moldflow material library, (2017).

Google Scholar

[18] B. A. G. Schrauwen, L. C. A. v. Breemen, A. B. Spoelstra, L. E. Govaert, G. W. M. Peters, H. E. H. Meijer, Structure, Deformation, and Failure of Flow-Oriented Semicrystalline Polymers, Macromolecules 37 (2004) 8618-8633.

DOI: 10.1021/ma048884k

Google Scholar