Preparation of New Carbonized Polymer Dots with Folic Acid and Detection of Copper Ion

Article Preview

Abstract:

Fluorescent detection is a practical kind of methods to use in heavy metal ions detection technology. Carbonized Polymer Dots (CPDs) is good carbon-like material with low toxicity, green, ion-response. In this work, we successfully synthesized a yellowing fluorescent CPDs from folic acid. The luminescence intensity of CPDs decreased with the increase of copper ion content, and the detection limit was 0.44ppm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

160-165

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A. M. Asiri, A. O. Al-Youbi and X. Sun, Hydrothermal Treatment of Grass: A Low‐Cost, Green Route to Nitrogen‐Doped, Carbon‐Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Label‐Free Detection of Cu(II) Ions, Adv. Mater., 24 (2012) 2037–(2041).

DOI: 10.1002/adma.201200164

Google Scholar

[2] L. Pan, S. Sun, L. Zhang, K. Jiang, H. Lin, Near-infrared emissive carbon dots for two-photon fluorescence bioimaging, Nanoscale 8 (2016) 17350–17356.

DOI: 10.1039/c6nr05878g

Google Scholar

[3] T. Feng, X. Ai, G. An, P. Yang, Y. Zhao, Charge-convertible carbon dots for imagingguided drug delivery with enhanced in vivo cancer therapeutic efficiency, ACS Nano 10 (2016) 4410–4420.

DOI: 10.1021/acsnano.6b00043

Google Scholar

[4] H. Wang, Q. Lu, Y. Hou, Y. Liu, Y. Zhang, High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid, Talanta 155 (2016) 62–69.

DOI: 10.1016/j.talanta.2016.04.020

Google Scholar

[5] Y. Huang, J. Zhou, H. Feng, J. Zheng, H.M. Ma, W. Liu, C. Tang, H. Ao, M. Zhao, Z. Qian, A dual-channel fluorescent chemosensor for discriminative detection of glutathione based on functionalized carbon quantum dots, Biosens. Bioelectron. 86 (2016) 748–755.

DOI: 10.1016/j.bios.2016.07.081

Google Scholar

[6] S. Hu, A. Trinchi, P. Atkin, I. Cole, Tunable Photoluminescence Across the Entire Visible Spectrum from Carbon Dots Excited by White Light. Angew. Chem. Int. Ed. 54 (2015) 2970−2974.

DOI: 10.1002/anie.201411004

Google Scholar

[7] B. Fang, P. Wang, Y. Zhu, C. Wang, G. Zhang, X. Zheng, C. Ding, J. Gu and F. Cao, Basophilic green fluorescent carbon nanoparticles derived from benzoxazine for the detection of Cr(VI) in a strongly alkaline environment, RSC Adv., 8 (2018) 7377–7382.

DOI: 10.1039/c7ra10814a

Google Scholar

[8] D. Luo, S. Liu, N. Li, H. Luo, Water-soluble polymer dots formed from polyethylenimine and glutathione as a fluorescent probe for mercury(II), Microchimica Acta, 185 (2018) 284.

DOI: 10.1007/s00604-018-2817-3

Google Scholar

[9] L. Yu, G. Ren, M. Tang, B. Zhu, F. Chai, G. Li and D. Xu, Effective Determination of Zn2+, Mn2+, and Cu2+ Simultaneously By Using Dual-Emissive Carbon Dots as Colorimetric Fluorescent Probe, Eur. J. Inorg. Chem., 29 (2018) 3418–3426.

DOI: 10.1002/ejic.201800474

Google Scholar

[10] S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective, Nano Res. 8 (2015) 355–381.

DOI: 10.1007/s12274-014-0644-3

Google Scholar

[11] X. Liu, H. Jiang, J. Ye, C. Zhao, S. Gao, C. Wu, et al., Nitrogen-doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence, magnetic resonance, and computed tomography triple-modal in vivo bioimaging, Adv. Funct. Mater. 26 (47) (2016) 8694–8706.

DOI: 10.1002/adfm.201603084

Google Scholar