Preparation of Homogeneous Fe-Al Intermetallic Compound Sheet by Multi-Layered Rolling and Subsequent Heat Treatment

Article Preview

Abstract:

Iron aluminides exhibit good resistance to high-temperature oxidizing and sulphidizing environments and have potential for structural applications at high temperatures under corrosive environments. In this study, an Fe-Al intermetallic compound was prepared by multi-layered roll-bonding of elemental Fe and Al foils. The process consisted of the accumulative roll-bonding (ARB) for making a laminated Fe/Al sheet and the subsequent heat treatment promoting a solid-phase reaction in the laminated Fe/Al sheet. Accumulated foils were rolled and bonded at room temperature or 573 K. A pulsed electric current sintering (PECS) process was used for the subsequent heat treatment. The microstructures produced at each processing stage were characterized by optical microscopy and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS). Vickers microhardness testing was used for hardness determination. A homogeneous intermetallic compound of Fe3Al or FeAl could be obtained after the subsequent heat treatment for 1.8 ks at 873 K and for 3.6 ks at 1173 K.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Pages:

857-860

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.G. McKamey, J.H. DeVan, P.F. Tortorelli and V.K. Sikka: J. Mater. Res. Vol. 6 (1991), p.1779 µ.

Google Scholar

[2] H. Mehrer, M. Eggersmann, A. Gude, M. Salamon and B. Sepiol: Mater. Sci. Eng. A Vol. 239-240 (1997), p.889.

DOI: 10.1016/s0921-5093(97)00680-1

Google Scholar

[3] S.H. Ko, R. Gnanamoorthy and S. Hanada: Mater. Sci. Eng. A Vol. 222 (1997), p.133.

Google Scholar

[4] S.M. Zhu, M. Tamura, K. Sakamoto and K. Iwasaki: Mater. Sci. Eng. A Vol. 292 (2000), p.83.

Google Scholar

[5] S.C. Deevi: Intermetallics Vol. 8 (2000), p.679.

Google Scholar

[6] H. Inoue, M. Ishio and T. Takasugi: Acta Mater. Vol. 51 (2003), p.6373.

Google Scholar

[7] J.G. Luo and V.L. Acoff: Mater. Sci. Eng. A Vol. 379 (2004), p.164.

Google Scholar

[8] J. Oh, W.C. Lee, S.G. Pyo, W. Park, S. Lee and N.J. Kim: Metall. Mater. Trans. A Vol. 33A (2002), p.3649.

Google Scholar

[9] A. Nishimoto, H. Ogata, K. Nakao and K. Akamatsu: J. Jpn. Soc. Heat Treat. Vol. 44 (2004), p.89.

Google Scholar

[10] A. Nishimoto, K. Akamatsu, K. Nakao, K. Ichii and T. Hiraki: Trans. Mater. Heat Treat. Vol. 25 (2004), p.53.

Google Scholar

[11] D. Tomus, K. Tsuchiya, M. Inuzuka, M. Sasaki, D. Imai, T. Ohmori and M. Umemoto: Scripta Mater. Vol. 48 (2003), p.489.

DOI: 10.1016/s1359-6462(02)00510-9

Google Scholar

[12] H.S. Ding, J.M. Lee, B.R. Lee, S.B. Kang and T.H. Nam: Mater. Sci. Eng. A Vol. 444 (2007), p.265.

Google Scholar

[13] H. Furuhata, N. Chikui and O. Ohashi: J. Japan Inst. Metals Vol. 68 (2004), p.511.

Google Scholar

[14] K. Nishimoto, K. Saida and R. Tsuduki: Sci. Technol. Weld. Join. Vol. 9 (2004), p.493.

Google Scholar

[15] A. Nishimoto, K. Akamatsu and K. Ikeuchi: Mater. Sci. Forum Vol. 539-543 (2007), p.3883.

Google Scholar

[16] A. Nishimoto and K. Akamatsu: Solid State Phenom. Vol. 127 (2007), p.289.

Google Scholar

[17] T. Matsubara, T. Shibutani, K. Uenishi and K.F. Kobayashi: Intermetallics Vol. 8 (2000), p.815.

Google Scholar

[18] M. Tokita: J. Soc. Powder Technol. Jpn. Vol. 30 (1993), p.790.

Google Scholar