Luminescence Imaging of Extended Defects in SiC via Hyperspectral Imaging

Article Preview

Abstract:

Over the past decade, improvements in silicon carbide growth and materials has led to the development of commercialized unipolar devices such as Schottky diodes and MOSFETs, however, much work remains to realizing the goal of wide-scale commercialization of both unipolar and bipolar devices such as pin diodes or IGBTs, for high applications requiring high powers, operating in elevated temperatures or radiation environments or for many fast switching applications. Despite the great strides that have been made in reducing extended and point defect densities during this period, such defects still remain and with the push to lower off-cut angle substrates are in many cases seeing increases in prevalence. Thus, spectroscopic and imaging techniques for locating and identifying these defects are in high demand. Luminescence imaging and spectroscopy have both been utilized heavily in such work, yet simultaneously obtaining corresponding spectroscopic and spatial information from such defects is problematic. Here we report on hyperspectral imaging of electroluminescence from SiC pin diodes, whereby a stack of luminescence images are collected over a wide spectral range (400-900 nm), thereby providing the ability to both image distinct features and identify their corresponding spectral properties. This process is also equally applicable to collecting either photo- or electroluminescence from other materials or devices emitting in either the UV-Vis or NIR spectral range, as well as to reflectance, transmission or other imaging techniques.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

403-406

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. D. Caldwell, R. E. Stahlbush, O. J. Glembocki, M. G. Ancona and K. D. Hobart, J. Appl. Phys. 108 (2010) 044503.

Google Scholar

[2] R. E. Stahlbush, B. L. VanMil, R. L. Myers-Ward, K. K. Lew, D. K. Gaskill and C. R. Eddy, Appl. Phys. Lett. 94 (2009) 041916.

DOI: 10.1063/1.3070530

Google Scholar

[3] R. E. Stahlbush, K. X. Liu, Q. Zhang and J. J. Sumakeris, Mater. Sci. Forum 556-557 (2007) 295-298.

Google Scholar

[4] A. J. Giles, J. D. Caldwell, R. E. Stahlbush, B. A. Hull, N. A. Mahadik, O. Glembocki, K. D. Hobart and K. X. Liu, J. Electron. Mater. 39 (2010) 777-780.

DOI: 10.1007/s11664-010-1109-4

Google Scholar

[5] J. D. Caldwell, A. J. Giles, R. E. Stahlbush, M. G. Ancona, O. J. Glembocki, K. D. Hobart, B. A. Hull and K. X. Liu, Mater. Sci. Forum 645-648 (2010) 277-282.

DOI: 10.4028/www.scientific.net/msf.645-648.277

Google Scholar

[6] A. Galeckas, J. Linnros and P. Pirouz, Phys. Rev. Lett. 96 (2006) 025502.

Google Scholar

[7] K.-B. Park, Y. Ding, J. P. Pelz, J. Grim, M. Skowronski, M. K. Mikhov, Y. Wang and B. J. Skromme, Mater. Sci. Forum in press (2006)

Google Scholar

[8] M. Skowronski and S. Ha, J. Appl. Phys. 99 (2006) 011101.

Google Scholar

[9] R. S. Okojie, M. Xhang, P. Pirouz, S. Tumakha, G. Jessen and L. J. Brillson, Appl. Phys. Lett. 79 (2001) 3056-3058.

DOI: 10.1063/1.1415347

Google Scholar

[10] H. Iwata, U. Lindefelt, S. Oberg and P. R. Briddon, J. Appl. Phys. 93 (2003) 1577.

Google Scholar

[11] H. Iwata, U. Lindefelt, S. Oberg and P. R. Briddon, J. Appl. Phys. 94 (2003) 4972.

Google Scholar

[12] K. X. Liu, R. E. Stahlbush, S. I. Maximenko and J. D. Caldwell, Appl. Phys. Lett. 90 (2007) 153503.

Google Scholar

[13] M. Ikeda, H. Matsunami and T. Tanaka, Phys. Rev. B 22 (1980) 2842-2854.

Google Scholar

[14] S. I. Maximenko, J. A. Freitas, P. B. Klein, A. Shrivastava and T. S. Sudarshan, Appl. Phys. Lett. 94 (2009) 092101.

Google Scholar

[15] H. Fujiwara, T. Kimoto, T. Tojo and H. Matsunami, Appl. Phys. Lett. 87 (2005) 051912.

Google Scholar

[16] J. D. Caldwell, R. E. Stahlbush, O. J. Glembocki, K. X. Liu, K. D. Hobart and F. Kub, J. Vac. Sci. Technol. B 24 (2006) 2178.

Google Scholar

[17] J. D. Caldwell, P. B. Klein, M. E. Twigg, R. E. Stahlbush, O. J. Glembocki, K. X. Liu, K. D. Hobart and F. Kub, Appl. Phys. Lett. 89 (2006) 103519.

DOI: 10.1063/1.2346135

Google Scholar